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ABSTRACT
Enhanced storage capacities and new learning algorithms have
increased the role of text and speech training data bases in the
construction of text-to-speech systems. It has become apparent,
however, that not always learning algorithms are available that
have strong generalization capabilities – the ability to generalize
from cases seen in the training data base to new cases encoun-
tered during TTS operation. This makes it important to measure
and understand the degree ofcoverageof the input domain of a
text-to-speech system (usually, the entire language) by a given
training data base. The goal of this paper is to investigate the
feasibility of coverage in several domains of interest for TTS. It
is shown that, as a result of the combinatorics of language, cov-
erage is typically quite disappointing. This puts a premium on
the generalization capability of learning algorithms.

1. INTRODUCTION
A typical text-to-speech (TTS) system represents textual
input in terms of various classes of units, such as words,
phonetically transcribed words, contextual vectors for du-
ration prediction (e.g.,< Stressed; InCoda; Phrase �

Medial; ::: >), and acoustic inventory elements. Since
the goal of text-to-speech synthesis is to mimic human
speech, we can characterize the task of a TTS component
as that ofpredictinghuman output from input units.

Two distinct traditions have developed in TTS construc-
tion. In one (data based approaches), general purpose sta-
tistical techniques extract parameters from a training data
base; little knowledge of the content area is used. A typi-
cal example is usage of classification and regression trees
(CART) for prediction of segmental duration from context
[5]. Here, the learning algorithm receives as input com-
binations of segmental durations and vectors for duration
prediction, and sets up a tree by branching on vector com-
ponents such as to minimize the variance ateach terminal
node. Except for the decision what information to include
in the vectors, no content specific knowledge is used.

In the other (knowledge based approaches), content-
specific models are used, perhaps in conjunction with pa-
rameter estimation. An example is the approach to seg-
mental duration modeling used by Klatt in the MITalk sys-
tem [1], where durations are predicted with rules such asif
vowel V is stressed, subtractmV ms from the intrinsic du-
ration iv, multiply by 1.4, and addmV . The mathematical
structure of this rule is knowledge based, and the values of
the parametersmV andiv are obtained via statistical es-
timation. The knowledge involved here is the reasonable

idea that all vowels are lengthened by stress, and that this
effect is larger (measured in ms) for intrinsically longer
vowels.

These two approaches represent opposite poles on a con-
tinuum of increasing reliance on training data bases and
decreasing reliance on prior knowledge. Increases in data
storage, computational speed, and new algorithms seem
to make data based approaches increasingly more attrac-
tive. At the same time, it has become apparent that these
approaches have fundamental shortcomings generalizing
from unit types seen in the training data to unseen unit
types. (We distinguish between unittypesand unittokens;
the latter are individual instantiations of the former.) A
good example is provided in a study by Maghbouleh [4],
who found that a knowledge based approach [7] general-
ized much better than CART to test materials drawn from
a different corpus than the training materials. In fact, even
when CART was given two orders of magnitude more
training data than the knowledge based approach, the dif-
ference in performance hardly decreased.

However, if all unit types can be covered in a training cor-
pus, then it may be preferable to use general-purpose sta-
tistical techniques. The reason is that we have to pay a
price for the better generalization capability of knowledge
based techniques, which is that the assumptions these
techniques are based on are imperfectly true. Hence, they
cannot represent data on a given set of unit types asaccu-
rately as (unconstrained) general-purpose statistical tech-
niques. If no generalization is needed, the latter tech-
niques should be superior.

A fundamental issue to be resolved when deciding what
type of approach to use for a particular TTS component
is whether a practically feasible training data base can
be developed that is large enough to cover the unit type
space. If such a data base cannot be developed, then
one might consider using knowledge-based methods, even
when initial results with general-purpose statistical tech-
niques look promising.

The goal of this paper is to investigate the feasibility of
coverage in several domains of interest for TTS.

2. CONCATENATIVE INVENTORIES

The first analyses concern concatenative inventories for
text-to-speech synthesis. In most systems, a small num-



ber (fewer than 5,000, often fewer than 2,000) of context-
independent acoustic inventory elements (corresponding
to n-phones, such as diphones) is generated from a speech
data base. These units are often diphones, although longer
units are also used. A common idea is to take advantage
of increased storage capabilities, and drastically increase
the size of concatenative inventories. We discuss here two
proposals: (1) Context-specific concatenative units, and
(2) Obstruent-terminated units.

2.1. Prosodic units

At run time, signal processing methods change timing and
pitch to make the unit appropriate for the context in which
it occurs. Since these methods often introduce audible
distortions, it has been proposed to use far larger con-
catenative inventories that would cover combinations of
n-phones and contexts and thus would require little signal
processing at run time.

In our analysis, 250,000 sentences from the Associated
Press Newswire were automatically transcribed by the text
analysis components of the Bell Labs Text-to-Speech Sys-
tem. Next, we constructed a contextual vector for each
diphone in the transcribed sentences, containing informa-
tion about key factors such asaccent status (accented vs.
deaccented) and within-utterance position (initial, final,
medial). The factors were kept deliberately coarse. The
type count of diphone-context combinations was 222,678.
Since most of these combinations are extremely rare, one
cannot conclude that all these combinations must be cov-
ered in the training set (acoustic inventory) for adequate
coverage of the input domain: if a system misses a unit
once every thousand sentences, this should not be con-
sidered a problem. However, when we analyzed the data
using a statistic we call thecoverage indexof a training
set, the situation turned out to be more problematic than
that.

The coverage index of a given training set with respect to
a given domain is defined as the probability that all combi-
nations occurring in a randomly selected test sentence are
represented in the training set. Thus, 0.75 coverage means
that the probability is 0.75 that all combinations in a ran-
domly selected test sentence also occurred in the training
set.

We found that a training set of 25,000 combinations had
an index of only 0.03, and that an index of 0.75 required a
training set of more than 150,000 combinations (see Fig-
ure 1). Given that both training and test sentences were
from the same text “genre” (Associated Press Newswire),
the values of the coverage index will be worse when there
are large differences between the text genres used for
training vs. test. Hence, context-sensitive approaches
to acoustic inventory construction require astronomical
databases, which may pose problems not so much for
computer storage as for speakers.

The likely cause for these results is that the type count

of rare combinations is quite large, so that even when the
probability of aparticular rare combination occurring in
a given sentence is by definition small, the probability of
somerare combination occurring is surprisingly large.
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Figure 1:Coverage index for prosodic units as a func-
tion of inventory size. The horizontal dotted line indi-
cates a coverage index of 0.75, for which a 150,000 unit
training set is required

ALL-SONORANT UNITS
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Figure 2: Coverage index for all-sonorant units as a
function of inventory size. The horizontal dotted line
indicates a coverage index of 0.75.

2.2. Obstruent-terminated units
It it obvious that some acoustic unit cutpoints are prefer-
able over other cutpoints. For example, voiceless stop clo-
sures are a good place to cut, because these regions are
hardly affected by coarticulatory processes and have very
low energy. On the other hand, the schwa is short and is
heavily affected by surrounding phones. Acoustic units
that end on or start with schwa are likely to have spec-
tral discrepancies. Hence, many systems embed schwa’s
in triphones, not diphones. A proposal flowing from these
considerations is to only use units that are cut in obstruent
regions.

We conducted the same type of analysis as in the previous
subsection, with similar results (see Figure 2).

2.3. Conclusions
These two analyses show that the frequency distributions
of the proposed units make it impractical to construct con-



catenative inventories from them. The fact that both train-
ing and test materials were from the same genre makes
these results all the more powerful.

One practical implication is that while it certainly does
not hurt speech quality to include a certain number of all-
sonorant or prosodic units, the expected additional cover-
age from those units may be disappointingly small. For
the overall quality of the system, it may be much more
important to focus resources on (1) optimizing a smaller
set of units that is known to have complete coverage, and
on (2) development of signal processing techniques that
are robust with respect to the concatenation operation and
to fundamental frequency and timing alterations.

3. DURATION MODELING
The next analysis is related to the preceding analysis, but
concerns construction of the component that computes
segmental duration. Here, we used the same contextual
annotation scheme as before, but applied it to individual
phones (not diphones). Thus, the basic unit here con-
sisted of combinations of segment identity and contextual
vector. We analyzed 797,524 sentences, names, and ad-
dresses (total word token count: 5,868,172; total phonetic
segment count 22,249,882). The total combination type
count was 17,547. Of these 17,547 types, about 10 percent
occurred only once in the entire data base and 40 percent
occurred less than once in a million phone occurrences.
We found that for samples in excess of 5000 units, the type
count increased linearly with the logarithm of the number
of units, with no sign of deceleration. Hence, it is uncer-
tain whether the true type count in the language is 20,000,
30,000, or significantly larger than that. We also found
that even in samples as small as 320 units (the equivalent
of a small paragraph), the probability of encountering a
unit occurring only once in a million cases is near unity.
Not surprisingly, the coverage index of randomly selected
training sets was quite low even for large sets.

4. DISTRIBUTIONAL DIFFERENCES BETWEEN
CORPORA

Often, training data are drawn from one particular cor-
pus or class of corpora. For example, some components
of the Bell Labs text-to-speech system are trained on the
Associated Press Newswire. This raises the issue of how
much overlap there is between different corpora. After all,
we intend our text-to-speech system to work equally well
on, say, hotel reservation applications, newspaper head-
lines, email, traffic directions, stock quotes, and whole-
sale groceries. In this section, we discuss distributional
differences (i.e., differences in the frequency distribution
of a given unit class) between corpora.

4.1. Triphone distributions
How large are the differences in triphone distribution
between two distinct text genres? We selected a set
of 169,328 personal names, and a set of 347,857 sen-
tences from the Associated Press Newswire not contain-

0 1 10 100 1,000 10,000

0 0 0 1,366 888 33 0
1 0 177 309 327 26 0

10 6,417 466 1,043 1,353 114 3
100 3,024 390 1,378 2,936 672 21

1,000 982 106 381 1,947 1,480 119
10,000 124 8 16 222 479 148

100,000 3 0 0 2 3 9

Table 1: Triphone frequencies cross-tabulated for name
corpus (rows) and sentence corpus (columns). For exam-
ple, 888 triphone types occur not at all in the name corpus,
but 11-100 times in the sentence corpus.

ing any proper names. We found that the triphone dis-
tributions were quite different indeed. For example, of
the 26,972 triphone types occurring in either text genre,
12,837 (47.5%) occurred in one sets but not in the other.
If one takes pairs of smaller sub-samples of the two sets,
the overlap further decreases.

Table 1 presents a cross-tabulation of the triphone fre-
quencies. The first row and column show that many tri-
phones absent in one corpus are actually quite frequent
in the other corpus. For example, 888 of the 2,287 tri-
phones absent in the name corpus occur at least 100 times
in the sentences corpus; similarly for 6,417 of the 10,550
triphones absent in the sentences corpus.

These data show that, unless the application domain of a
TTS system is well-defined and severely restricted, one
cannot expect a system trained on one text genre to be
prepared for different text genres.

4.2. Vocabulary distributions

We compared a number of corpora in terms of vocabu-
lary distributions. The corpora used were: Associated
Newswire (1988-1992), the Bible, the Quran, the col-
lected works by Shakespeare, proceedings of the U.S. De-
partment of Energy, proceedings of the Canadian Parlia-
ment (Hansard), a collection of fiction and non-fiction lit-
erature published by Harper & Row, Grolier’s Encyclope-
dia, the Brown Corpus [3], the Comprehensive Textbook
of Psychiatry [2], a sample of quotes, and a list of Home
Box Office movie descriptions.

For each pair of corpora, we obtained the distributional
overlap by computing the product-moment correlation be-
tween the log frequencies; words occurring in only one of
the two corpora were assigned frequencies of 0.1; words
not occurring in either corpus in a pair were omitted from
the analysis. We then performed a multidimensional scal-
ing procedure described by Torgerson [6] which yields
a multidimensional representation where inter-point dis-
tances are maximally (inversely) correlated with the cor-
relations. Thus, this representation provides insight in the
pattern of similarities and dissimilarities between the cor-
pora. Overall, the correlation varied between -0.31 (be-
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Figure 3:Multidimensional representation of text gen-
res based on correlations between vocabulary fre-
quency distributions.

tween the Bible and movie descriptions) and 0.71 (be-
tween Associated Press Newswire 1990 and 1991), with
a median of 0.22. Thus, even very similar corpora such as
the Associated Newswire in two consecutive years did not
correlate highly (0.71 represents 50% of the variance).

Figure 3 shows the results of the multidimensional scaling
procedure. There is a fair amount of structure in this pic-
ture. The Bible, Quran, and Shakespeare share usage of
archaic English; the Department of Energy and the Psy-
chiatry Textbook share usage of technical jargon; and the
Associated Newswire 1992 saw the arrival of a new cast
of characters due to Presidential elections in the US.

These result replicate the results on triphone distributions,
and add that the amount of overlap shows systematic pat-
terns where historically related genres have more overlap.

4.3. New tokens vs. new types
A standard method for system evaluation (whether TTS
or ASR) is to draw both test and training samples from
the same corpus. Although there may exist considerable
distributional differences between random samples of the
same corpus, our results show that these differences are
not nearly as large as those between different text gen-
res. This implies that in the standard test method a rel-
atively high proportion of test tokens does not represent
new types, butnew tokens of old types. As a result, these
tests do not tax the generalization capability of the learn-
ing system; they test the accuracy with which the system
represents types seen in the training data base – which
is often quite good for general-purpose statistical tech-
niques. We propose that such tests be carried out using

materials from the broadest possible range of corpora.

5. CONCLUSIONS
The goal of this paper was to investigate the feasibility of
coverage for several domains of interest for TTS. In all
domains investigated, it proved impossible to obtain ei-
ther complete coverage or at least very high values of the
coverage index (indicating near-certainty of coverage) us-
ing training data bases of a practically viable size. These
results were obtained in analyses where both training and
test materials were drawn from the same text corpus. The
analyses of the overlap between different text corpora
showed that distributional differences between text cor-
pora are large and systematic. This makes obtaining high
values of the coverage index even more difficult if the in-
tention is to apply a system trained on one text corpus to
other corpora. This is a realistic scenario, however, given
the broad and unpredictable range of possible TTS appli-
cations.

We conclude that when a learning algorithm is used that is
not known to have solid generalization capabilities, it may
be critical to investigate whether the TTS input domain
can be covered by an affordable training corpus. Initial
successes in experiments that do not tax the generaliza-
tion capability may prove deceptive when the system is
confronted with truly new cases.
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