IMPROVING OF AMPLITUDE MODULATION MAPS FOR FO-DEPENDENT
SEGREGATION OF HARMONIC SOUNDS

Frédéric BERTHOMMIER " & Georg MEYER™

*Institut de la Communication Parlée/INPG

46, Av. Félix Viallet
38031 Grenoble CEDEX, FRANCE
bertho@icp.grenet.fr

ABSTRACT

The AM-map model [1] can be improved by adding
two supplementary integration stages: the pooled map and
the identification map. The pooled map's representation
corresponds to a systematic bottom-up grouping of the
first harmonics extracted at the level of the primary AM
map. The identification map's representation corresponds
to a classification of spectra segregated along the pitch
axis. This labelling allows selection at the pooled map
level of the two salient vowels according to the
distribution of energy across the pitch axis. The selected
labels are those associated with the higher peaks. During
this selection stage, FOs are not given. Simulations show
that the model is able to separate spectra according to FO
differences. The model therefore predicts qualitatively (1)
the ability of listeners to segregate concurrent vowels, and
(2) the effects of vowels' duration and relative level on
segregation performance.

1. INTRODUCTION

We have shown previously [1] that the amplitude
modulation map (AM map) is an intermediate
representation of complex sounds allowing separability of
spectral cues according to the fundamental frequency (F0).
In order to solve the FO tracking problem, a new model is
proposed here that combines both bottom-up (or
primitive) and top-down labelling information. The
decision stage, which is used to select salient spectra,
works at the intermediate level. The segregation power of
the whole model is mainly primitive because only a
simple schema-based segregation based on subtraction is
engaged when the primitive process fails.

First, the FO-dependent recovering of spectrum is re-
considered, and we add a supplementary representation after
the primary AM map, which is the pooled map (pAM
map). In order to validate the primitive segregation stage
Assmann and Summertfield [2] proposed to perform
harmonic grouping with the auto-correlation, applied on
each channel of the peripheral representation (the cochlea
and the auditory nerve).

We have previously shown that AM map is able to
replace auto-correlation. The principle is a demodulation
of the signal, channel by channel, followed by a Fourier
decomposition. The identification process was preceded by
a FO-guided segregation of spectral components (e.g.,
formants). FOs were assumed to be identified separately,
and 'given' to the model. Now, the pooled map is a good
substitute to autocorrelation. Both auditory models take
into account the temporal coding of FO performed at the
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peripheral level and are apparently able to predict relatively
well the segregation performance of human listeners. It is
thus necessary to differentiate between these two models.
One method is to assess to segregation power of each
model using the classical double-vowel segregation
paradigm and looking at the effects of changing the
relative levels of each vowel.

2. THE NEW MODEL

Main characteristics of the new model are included in
Fig.1. Three stages correspond to the primary AM map
model, connected to the pooled map and the identification
map.

2.1 The primary AM map (AM map)

Stationary complex signals, such as vowels, are added
(Input) and processed through a gammatone filterbank and
weighted by an audiogram (Pre-proc. stage, Fig. 1). To
build the primary AM map, a FFT is computed channel
by channel after demodulation (rectification and bandpass
filtering in the pitch domain). The representation is bi-
dimensional: the first axis is the spectral one, and the
second axis represents the envelope spectrum, related to
periodicity information. The output of the filterbank is
coded temporally and recoded spectrally by the FFT
analysis. The modulation envelope is produced by the
beating of unresolved harmonics in the medium and high
frequency domain. Because the signal envelopes are not
pure cosines, the AM spectrum contains harmonics.

With this model, the second axis allows a
representation of the fundamental frequency in each
channel. Energy is distributed along this axis because
harmonics are produced. A supplementary process is
necessary to pool (e.g., to group) the harmonics. This is
implemented with by an harmonic sieve. The goal is to
recover the spectrum of each signal presented. The
pooling process is limited to the first five to ten
harmonics whereas at least twenty harmonics have to be
selected in Parsons' model [3] of segregation by harmonic
selection. We select harmonics which are resolved
harmonics in the low frequency domain and those of the
AM spectrum, appearing after demodulation, in the high
frequency domain.

Given precise FO estimates, the model causes
minimal overlap between competing sounds and hence
minimal distortion of the recovered spectra. This previous
version of the model, as all other existing segregation
models, is FO-guided so that a parallel estimation of FO is
needed.
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Figure 1: Block-Diagram of the model. sSAM map and spAM map are summary maps
having only the pitch dimension and result of a summation of energy across channels of spectral axis.

It is effective when FO differences are as small as
one FEFT bin (5-10Hz). Recognition scores obtained with
segregated spectra can consequently be very good but
depend critically on the precision of the FO estimation
stage. With the autocorrelation method, which is the
main alternative to the AM map, FO estimation is
obtained by selecting the peaks in the summary
representation [2]. In this method, energy of harmonic
peaks is localised along the delay axis so that it is not
necessary to perform a supplementary grouping process.
Selection of candidates in the summary map is direct.
Similarly, we estimated the pitch in a summary AM
map (SAM map) using a harmonic sieve method.

The main advantageous properties of primary AM
map are: (1) to allow resolution according to the
window length, (2) to be a quasi-linear representation.
Introduction of a supplementary pooling process
intrinsically performed by autocorrelation is needed.

2.2 The pooled map (pAM map)
We propose to pool directly by summing multiple

‘partial’ spectra that are distributed relatively to the FO
axis in the primary map.

/e/ FO = 100 Hz

/o/ FO = 150 Hz

Chan. nb. FO freq. (Hz)
Figure 2: Representation of /e/ 100Hz +/0/ 150 Hz
(0dB, 200ms) in the pooled map. We can see the first
harmonic of /e/.

The summation of five to ten harmonics is preceded
by an interpolation of five to ten, and completed by
weighting with SAM map. This is in order to eliminate
spurious peaks caused by the systematic summation,
when no peak already exists in SAM map. For example,
when 100/200/300Hz are present in the AMmap, a peak
at 150Hz will appear, resulting from the summation of
existing energy at 300Hz. This is eliminated by
multiplication with SAM map, because there is no
energy at 150Hz. Notice that sSAM map takes into
account peaks allowed by demodulation in the high
frequency domain as well as the fundamental peak. After
pooling, we evalute the square root. The pooled map is a
two-dimensional representation of sounds where each
point relates energy to frequency and modulation
frequency. Peaks are resolved well (an example is shown
Fig. 2).

We show that segregation of complex sounds
becomes simply FO-dependent. Explicit (external) FO
identification is not necessary because each peak
appearing in the new map corresponds to a candidate
signal at a pitch that is given by the position on the
map. A first version of the selection process aims to
identify the highest peaks of the map, but we remark
that this selection process is not satisfactory. There are
at least three effects which will complicate a simple
peak-picking strategy to segregate two candidates: (1)
with close FOs, when the two peaks are not well resolved
(2) the second peak in amplitude is often a harmonic of
the first (3) the first harmonic of the second candidate is
often unmasked, but its amplitude is lowered.

2.3 Coupling with an identification level

To complete our model, we propose to apply the
identification process systematically to each spectral
frame along the FO axis, in order to build a high-level
identification map (the ID map, Fig. 1). Building of
the ID map consists in a crosscorrelation between
normalised inputs (frames along the pitch axis) and every
stored prototype, which are also normalised. The most
correlated prototype is selected to label the summary
pooled map (spAM map), so that a label is associated



with each pitch value (top-down arrow from ID map to
spAM map, Fig. 1). This allows us to solve the
problem of detection of secondary peaks and shoulders
we mentioned before, by adding a supplementary
information with a pattern matching stage. A typical
example is shown Fig. 3, taking the same mixture as for
Fig. 2.

Labelling of spAM map

8t Dominant : /e/, f0 (est.) = 100 Hz
Second : /o/, f0 (est.) = 150 Hz
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Figure 3: Labelling of the summary pooled map and
identification of /e/ 100Hz +/o/ 150Hz (0dB, 200ms).
This is completed by pitch estimation.

The most important implication of this method is
that the selection is no longer driven by an explicit pitch
estimation (thereby violating the principle of minimal
commitment). With this representation, the pitch of the
recognised signal is an emergent property of the
segregation process as has been suggested by Bregman
(4]. FO identification can be a secondary product of this
selection process, because when we select a peak in the
upper-level, it is directly related with a FO place (est. FO,
Fig. 3).

Concurrent signals are segregated on FQ by virtue of
the representation, not because of an explicit extraction
process, which would require an external pitch estimate.
The principle of minimal commitment is upheld because
decisions on how to interpret the complex picture is
deferred to the pattern matching stage. We propose to
label energy before decision. The double vowel
identification task consists in selecting in spAM map
the two higher levels of energy associated with two
different labels, and to report these two labels (Output
may also be the two spectra, Fig. 1). If only one label is
detected a subtraction process is applied to the main peak
to obtain the masked spectrum and to label it. Hence,
this case occurs more frequently when input signals have
identical or close FOs.

2.4 The subtraction algorithm

The subtraction process we have implemented is a
decomposition of an input spectrum V (a vector which is
the frame of the main peak) by reference to previous
prototypic spectra. Practically, these are centroids of

classes. Supposing that V is a weighted sum of
unknown prototypes (for ex. V = al V1 + a2 V2), we
evaluate label and contribution of the dominant
prototype, which is the closest one to the mixture and
we remove it in order to identify the residue. This needs
an estimation of the first weight by the way of
computation of scalar products between V and the n
normalised prototypes, here:

V.Vl =al +a2 V2.V1 + ...
V.V2=al VI.V2 +a2 + ...
V.V3=al V1.V3 +a2 V2.V3 + ...

with Vi.Vi = 1, because the normalisation

This forms a system of n equations having n
unknown weighting coefficients ai. We summarise by
taking the correlation matrix M between all prototypes:
the vector <V.Vi> of scalar products is linearly related to
a vector of weights <ai> by <V.Vi> = M <ai>, so that
this system gets solution when det(M) not nul. Because
only the weight of the dominant member is needed, the
maximum V. Vj of scalar products V. Vi is determined to
get its label j. The first weight is aj = det(Mj)/det(M),
with Mj obtained by substitution in M of the column |
by the column vector <V.Vi>. The contribution of the
dominant (for ex., j=1) is subtracted from V so that the
scalar product between residue and any of the n
prototypes Vi becomes:

((V-al VI).Vi)=V.Vi-al VI.Vi=0+a2 V2.Vi + ..

Hence, the weight associated with j=1 becomes 0.
The second label is found by getting the maximum of
this new vector of scalar products. By generalisation to
mixture of multiple elements, this leads to the so called
Iterative Linear Separation (ILS), which is a simple
decomposition algorithm. We iterate the selection of
dominant and the evaluation of weight in the residue.

3. DOUBLE VOWEL SEGREGATION

A main property of AM map representation is to
allow simple control of the binding between spectral
features with FOs attributes. The interpretation of the
intermediate representation can be the simple extraction
of a spectral frame for a given (or selected) FO followed
by a pattern matching stage. In our previous studies, FOs
were given rather than estimated to study the segregation
performance of the AM maps independently from any
error introduced by pitch tracking [5]. This model was
able to predict human performance for a range of
experimental conditions. A pitch estimation stage was
expected to degrade recognition scores by about 10%.
The main features of this procedure are retained because
the new representation is an extension of the primary
AM map representation, which produces similar spectral
outputs. The pooled map is based on the first 5
harmonics of pitches between 90 and 210Hz, with 1-Hz
resolution. Identification rates are computed by cross-
correlation of all input frames, extracted along the FO
axis, with references templates obtained by driving the
model with isolated vowels.
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Figure 4: Double recognition rates with variation of
duration (4a, left) and relative level (4b, right).

Recognition rates for both constituent parts of
concurrent vowel pairs are shown Fig. 4. Pairs of
stationary synthetic vowels within /a,e,i,o,y,u/ have a
tirst member with FO=100Hz and a second one with FO
varying between 100 and 200Hz. The duration of the
stimuli has three levels: 50, 100, and 200ms. The rms
level of the second member also varies with three levels:
0, -6 and -12 dB. Evaluation is performed with all
possible non-identical pairs of the six vowels. Figure 4a
shows a variation of performance with signal duration
for a range of FO values of the second vowel. The 3
curves have a maximum at about 150Hz, indicating a
clear delta-FO dependence of segregation in the 3 cases.
We need 12Hz difference to reach the plateau for 200ms,
26Hz for 100ms and 50Hz for 50ms: larger FO
differences are necessary to segregate vowels with shorter
duration. The time-dependence of scores is the
consequence of the resolution allowed by the Fourier
transform. Autocorrelation models do not show this
effect, although it is seen in human data. Performance
also deteriorates with relative level difference (Fig. 4b).
The reduction in performance is broadly similar, but the
tlattening of the curve is more pronounced at -12 dB than
with 50 ms. This may indicate that the delta-FO cue
tends to deteriorate as the relative level differences
become large.

The design of these simulations (linked with
psychophysical experiments done in parallel) has been
done in order to evaluate segregation power when
information content decreases, by shortening the window
of time and by decreasing the relative level. We show in
Table 1 that the matrix of average performances is rather
symmetric. Decays expressed relatively to the best
performances have similar amplitudes along rows and
columns. For example, we can compare a -12dB rel.
level (the rms ratio is 4) - 64% (19% decay) - with a
quarter shortening in time at 0dB (200-50 ms) - 63%
(20% decay). This is globally consistent with the quasi-
linear characteristics of our model and with the basic
property of the Fourier transform (e.g., the time-
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frequency resolution trade-off). The amount of masking
of the dominant element of a pair over the other one
decreases with integration time because of an increasing
resolution. Symmetrically, it varies directly with the
relative amplitude of the masker in a linear model.

Time/rl| 200 ms | 100 ms 50 ms
0 dB 83 (0) 70 (13) 63 (20) 70 (0)
-6 dB 76 (7) 61 (22) 56 (27) 61 (9)
-12 dB 64 (19) 52 (31) 47 (37) | 54 (16)
74 (0) | 61 (13) | 55 (19) 63

Table 1: Average recognition performances (%) over
delta-F0 with co-variation of time and rel. intensity
levels. Decay rel. to (0dB, 200ms), in parenthesis.

Finally, recovering of FOs is also satisfactory, and
both FO are recovered in a range depending on time
window (about 10Hz at 100ms). When FO does not
correspond (e.g., it is not in a small range) with any FO
of the presented pair (or with a harmonic), this generally
leads to a labelling error.

4. CONCLUSION

The improved AM-map is able to process vowel
pairs without FO tracking. This suggests that natural
double-vowels can be successfully segregated, even when
FOs are difficult to identify precisely because of
interterences. However, overall performance still depends
critically on the duration/stationarity of the signal and on
the robustness of the classification stage. Segregation
performance for additive natural vowels remains to be
evaluated. The improved AM-map model is an updated
tool providing a representation of sounds that accounts
for both place and time coding. It is useful for (1)
understanding auditory processes in terms of
representation of sounds along perceptual dimensions
such as pitch and timbre, and (2) evaluating the relative
importance of primitive and schema-based segregation
properties in vowel segregation (streaming is mainly
performed at the primitive stage level in the present
model). Further study of the effects of the duration and
relative level of the concurrent vowels will complete the
comparison between the autocorrelation {6] and the AM-
map model. We expect that the autocorrelation model
will be more sensitive than the AM-map model to
changes in the relative level of concurrent vowels, and
less sensitive than the AM-map model to changes in
vowels duration.
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