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ABSTRACT

We motivate the integration of a probabilistic pronunci-
ation model into a system for recognizing spontaneous
speech and propose a possible architecture of such a
model. In order to develop an environment for ex-
periments, a simplified version employing constrained
phone recognition and discrete syllable-size HMM sub-
word units was implemented and evaluated. Although the
results are still significantly worse than those achieved by
our “conventional” word recognizer, they are encouraging
given that the experimental system is only a coarse ap-
proximation of the proposed approach.

1. MOTIVATION

In spontaneous speech, a significant portion (more than
40% according to our data) of words (tokens) is not pro-
nounced the way a standard dictionary would predict.
This is mainly due to various forms of coarticulation, but
also caused by the accent or personal preferences of the
speaker. Of course, triphone HMMs can successfully han-
dle a significant amount of variability, provided the lex-
ica used for training and recognition are the same. On
the other hand, robust, i.e. noisy models will not discrim-
inate as well as more specialized ones. We even observed
that our phone recognizer (trained using a canonical pro-
nunciation lexicon) frequently detected phones that were
not articulated but somehow “suggested” by the context.
Furthermore, while there will often be a strong regular-
ity of the modifications the context causes to a phone,
each phone is also a context for some other phones and
may cause confusion for them (e.g. the @-elision in the
/t- +n/ context will cause the model /t-@+n/ to be trained
on “not being there” but the following /@-n+*/ models
cannot be well trained since the actual acoustic context is
not /@-/ but /t-/). Even with rather noisy triphone mod-
els, we found a significant difference between the recog-
nition rates for canonically pronounced words and alter-
natively pronounced ones. On a corpus of 175 (manually
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phone-labeled) utterances, the word recognition rate (cor-
rectness) of the 87 utterances with a higher proportion of
canonically pronounced words (more than 73%) was 86%,
while the recognition rate for the other sentences was only
80.5%.

These considerations suggest that an improved lexical
model could potentially lead to significantly higher recog-
nition rates because it would allow to recognize a much
larger portion of non-canonically pronounced words and
to train better acoustic models.

Adding frequency-weighted pronunciation variants to
the lexicon is certainly a step in the right direction but for
larger vocabularies there are serious problems concerning
the training of such variants and the size of the resulting
search space.

An ideal lexical model would attach a probability to
any pronunciation of each word (or even phrase) and be
trainable using a limited amount of word-transcribed data.

2. A PROBABILISTIC LEXICON

The most obvious choice for such a model (for some-
one working with HMM speech recognizers) would be an
HMM itself, resulting in a word recognizer consisting of a
two layered HMM model; the first (acoustical) layer con-
taining the phone models and the second (lexical) layer
modelling pronunciations of words (see Figure 1). The

Figure 1: Two–layer model



working of such a model can best be explained using the
token–passing paradigm [10]. The first layer consists of a
triphone (or n–phone) HMM network as commonly used
for phone recognition. Phone sequence hypotheses (paths)
are represented by tokens that are propagated through a
network of HMM states. Each state must be able to hold
multiple tokens to avoid search errors.

Whenever a token is propagated to the final (non–
emitting) state of a phone HMM, the token is duplicated
and passed to the entry states of all connected phone
HMMs in the usual manner, adding phone language model
scores and phone transition penalties to the score of the to-
ken. Additionally, the token is also passed to all connected
HMM states in the upper level – the lexical layer. This
layer, however, uses its own token set. Hence the token
passed from the lower level is not treated as a token any-
more but as an output symbol. Provided there is a token
in the corresponding state in the higher level HMM and a
certain time constraint is met, the emission probability of
the symbol is added to the score of the token, or put more
precisely: to the proportion of the token' s score that was
accumulated in the last acoustical HMM. Then the token
is propagated in the usual way.

In theory, every state in every higher level HMM
would have to be connected to the final states of all acous-
tical HMMs, to ensure that the probability of every pro-
nunciation of every word can be calculated. This should
not pose a real problem, however, since the network can
be reduced heavily in various ways. First, it would not
make sense to distinguish between all context dependent
versions of an allophone when a token is passed to the up-
per layer, i.e. almost all connections can be bundled for
each allophone. Furthermore, HMM states in the upper
level should be shared to a large extent (possibly using
tree–based clustering methods). Finally, the network can
be pruned.

The pronunciation models in the upper layer could
be based on word or subword units. We examined the
number of different words, morphs and syllables be-
ing observed when using an increasing amount of our
Verbmobil 96 training data. Figure 2 shows that the in-
crease in the number of words is still linear even after hav-
ing observed 200,000 words. This translates to an OOV
rate of about 1.1% on the last 50K words of the train-
ing set. A linear increase is also observed for the num-
ber of morphs even though all training data was from one
domain only. Since the syllabic subword units yield the
smallest inventory among these alternatives, we decided
to use them to model pronunciation phenomena. Given
that the number of potential syllables in German is finite
(although rather large) one can hope to be able to train al-
most all syllables that are needed for recognition and thus
have sensible pronunciation models even for words which
were not in the training set.

Independent of the choice of subword units the pro-
posed two-layered model could be quite expensive com-
putationally. This could make it very difficult to conduct
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Figure 2: The number of different words (upper graph),
morphs (middle) and syllables (lower) for increasing
amount of training data being used.

the experiments necessary to work out its details, to un-
derstand its working and find its weaknesses.

3. SIMPLIFIED MODEL

In order to get a simple model to experiment with, we
decided to first implement a two-step HMM model where
the second layer is not directly connected to the first one
but only the (1-best) output of the first layer forms the
input to the second one. Since the output of the first layer
is a string of phones, this layer can quite easily be trained
and evaluated separately.

With this experimental setting, we mainly want to an-
swer the following questions:

What should the architecture of the lexical models
look like?

Which words and phrases should get their own
model and how can they best be found automati-
cally?

The two-step simplification comes at a cost – we can
not expect this model to find the same globally optimal
solution that the integrated two-layered model could find.
We investigated the loss of information caused by only
propagating the best phone string to the second stage.

The two-layer model can be simulated by generating a
huge phone-lattice and performing the second step on this
lattice. Based on these lattices we estimated a-posteriori
probabilities for each phone on a frame by frame basis.
We measured the amount of information necessary to pre-
dict the probabilities of all phones given the identity of
the best phone. The Kullback-Leibler distance was used



to measure the distance of the average distribution given
the best phone and the actual distribution.

The (weighted) average of these distances is about
as high as the entropy of the average distributions. This
means that we are losing about half the information con-
tained in the lattices.

To get a feeling for the upper bound on the recogni-
tion rate of a two-step recognizer, we replaced both rec-
ognizers by humans, i.e. we used manually phone-labeled
utterances and presented these phone sequences to a test-
person who tried to “recognize” the word sequences. The
achieved word accuracy of about 94% is probably close
to the level of agreement two human transcribers would
reach on the same corpus. This suggests, that a “perfect”
phone recognizer could serve as a suitable preprocessing
module – its output would still contain enough acoustical
evidence to recognize the utterance. The 20-30% error
our HMM phone recognizer currently introduces, how-
ever, translates to an accuracy of only 73% for the human
“word recognizer”. These recognition rates are only upper
bounds because the persons who phone-labeled the data
probably used lexical and semantic knowledge, which is
not available to our first stage. The second stage “human
recognition” also employed semantic knowledge, which
would be very hard to encode in our HMM models.

4. FIRST IMPLEMENTATION & RESULTS

4.1. Acoustical layer

Our baseline HMM recognizer was developed in the
framework of the Verbmobil project, aimed at develop-
ing a speech–to–speech translation system for German
dialogues. The decoder was tailored for word recog-
nition and features tree-clustered cross-word triphones
with 14–mixture Gaussians [2]. In last years Verbmo-
bil acoustic evaluation, the recognizer reached a word ac-
curacy of 80% (83.2% correctness) on the best hypothe-
ses and 96.4% (96.6%) on word graphs with 14.5 hy-
potheses per reference word. The system had a vocabu-
lary of 5,336 words, used a bigram language model and
was evaluated using a set of spontaneously spoken dia-
logues (EVAL96), that contained unknown words, hesita-
tions and false starts.

For our experiments, this system was used without
modification as phone recognizer, using a simple mono-
phone bigram “language model”. On a testset of 246
manually labeled utterances (MAN264), the recognizer
achieved 68.0% phone accuracy (77.8% correct). All our
experiments reported in the following sections are based
on this recognizer.

We are currently tuning our recognizer for phone
recognition (instead of word recognition). A signifi-
cant increase in recognition accuracy has been achieved
by using a different training method and a triphone bi-
gram as language model; the accuracy increased to 75.5%
(83.4%).

4.2. Lexical layer

The lexical layer of our prototype system employs dis-
crete HMMs that emit phone symbols. For each syllable
in our training corpus an HMM is constructed (one state
per phone in the canonical pronunciation). Loops as well
as forward skips are permitted and the emission probabil-
ities are initialized using a phone-confusion matrix esti-
mated from the recognition errors of our word-recognizer
[2]. In the first experiment all syllable HMM states cor-
responding to the same phone (according to the canonical
pronunciation) share one output distribution.

The model parameters are reestimated using a Baum-
Welch training scheme. The training is performed on
12,000 utterances for which phone sequences were recog-
nized by the first stage. Figure 3 shows the trained HMM
for the word “haben” as an example.

state symbol prob. state symbol prob.

h h 0.91 @ @ 0.90
a 0.03 a 0.04

a: a: 0.68 n n 0.76
a 0.28 m 0.22

b b 0.85
m 0.11

Figure 3: HMM for “haben”: transitions/emissions

With this approach the system achieved a word accu-
racy of 41.4% (48.2%) on our testset (not using a language
model). This result is significantly worse than the re-
sult we achieved with our “conventional” decoder: 51.5%
(58.7%). It should be noted that the two-step system is
about twice as fast as the other one. In the 1996 Verbmo-
bil evaluation our two-stage system achieved 66.6% accu-
racy on the best chain and 90.7% accuracy in a word graph
(14.4 hypotheses per reference word)1.

We experimented with various methods for training
more specific lexical models. First, we trained separate
output distributions for very frequent syllables (occurring
more than 200, 300 and 500 times in our training corpus).
We also used word-size HMMs to model very frequent
words (see table 1).

We performed experiments in order to find the up-
per bound of the recognition rate that could possibly be

1These results were not obtained in the same evaluation category as
those mentioned above.



threshold syllables words
200 41.8 (48.2) 42.5 (49.2)
300 42.0 (48.3) 42.7 (49.5)
500 41.8 (48.2) 42.7 (49.5)
baseline 41.4 (48.2)
conventional 51.5 (58.7)

Table 1: results for various degrees of sharing

achieved using the experimental model and to examine
how much harder it is to classify the manually labeled
phone transcriptions in contrast to classifying the canoni-
cally labeled data. We trained one set of models each for
the canonical phone string (CAN246), the manually la-
beled data and the actual output of the phone recognizer
(PHONE246) and then recognized the training set. For
these tests the lexicon contained only the words that were
in the training set. No language model was used. We
achieved 96.6% word-accuracy on CAN246, 92.4% on
MAN246 and 92.5% on PHONE246. It is surprising that
the word error rate increases only about 4% from CAN246
to PHONE246 while the phone recognizer had introduced
about 20-30% phone error rate to the input. These results
can be explained by the fact that we used a phone-bigram
“language model” which was trained on canonical pro-
nunciations for the phone recognition thus we might have
introduced regularities into the phone strings which were
just predicted by the language model and not contained in
the observation itself.

We would expect the manually labeled data to have
less variation than the automatically derived transcriptions
and thus the recognition performance on MAN246 should
be better than on PHONE246. The observed recognition
results may suggest that the current topology might not
be adequate for all phenomena observed in the data. For
instance, phone sequences can certainly not be adequately
described by a first order Markov model. Therefore, we
intend to use super-vectors to approximate a higher order
Markov model.

5. RELATED WORK

Most attempts to produce better lexical models aim at
finding the “optimal”, the (weighted) n-best pronuncia-
tions or a pronunciation network for the set of words con-
tained in a (large) phone labeled training corpus [1, 7, 9, 4,
6]. Alternatively phonetic rewriting rules can be learned
from training data [5, 8, 3]. These can even be used to pro-
duce pronunciation hypotheses for words which are not in
the training set. Both methods are used to replace a canon-
ical lexicon by a new lexicon with trained pronunciations.
Most approaches however do not feature explicit models
that assign probabilities to any possible
pronunciation of a given word.

6. CONCLUSIONS

We have presented a new approach to modelling pronun-
ciation variations that frequently occur in spontaneous
speech and pose a major problem for current speech
recognition systems. Further work will concentrate on im-
proved (“sharper”) acoustical models, more adequate lex-
ical HMM-architectures and the efficient coupling of the
two layers to form an integrated model.
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