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ABSTRACT

We describe experiments in modelling the dynamics of
fluent speech in which word pronunciations are modified
by neighbouring context.  Based on all-phone decoding
of large volumes of training data, we automatically
derive new word pronunciation, and context-dependent
transformation rules for phone sequences.  In contrast to
existing techniques, the rules can be applied even to
words not in the training set, and across word
boundaries, thus modelling context-dependent behavior.
We use the technique on the Wall Street Journal (WSJ)
training data and apply the new pronunciations and rules
to WSJ and broadcast news tests.  The changes correct a
significant portion of the errors they could potentially
correct.  But the transformations introduce a comparable
number of new errors, indicating that perhaps stronger
constraints on the application of such rules are needed.

1.  INTRODUCTION

Modern large vocabulary, continuous speech recognition
systems have three knowledge sources: acoustic models,
language models, and pronunciation lexicons.  A lexicon
provides pronunciation information for each word in the
vocabulary in phonemic units, which are modelled in
detail by the acoustic models.  The language model
provides the a priori probabilities of word sequences.

Whereas acoustic and language models can be trained
automatically from large amounts of data ([1,2]),
pronunciation lexicons are still mostly hand-crafted.  In a
few cases, the lexicon indeed has been either generated
or tuned automatically (e.g, see [3,4].)  However, the
state of the art in this technology is restricted to learning
word pronunciations in isolation that are static, i.e., that
remain unchanged during recognition.

Real speech, however, is dynamic.  Between-word co-
articulation is a major problem in the recognition of
continuous, fluent speech.  For example, the phrase
“DID YOU” often sounds something like “DIDJA”.  In
other words, the exact pronunciation of a word is
dynamically determined by its context. This has been
handled in a limited way by further handcrafting of static
pronunciations for common phrases ([5, 6]).  Our task is
to build a model of the context-dependent dynamics of
speech, and evaluate its effect on recognition accuracy.

A second problem with the conventional approach is that
we need a good quantity of training data for every word

in the vocabulary.  Modifications learnt for one word
cannot be applied to others.

In this paper we study ways of automatically or semi-
automatically tuning pronunciations, in isolation and in
context, and their effect on recognition accuracy.  The
basic principle relies on statistics gathered by processing
a large set of training data using an all-phone recognizer.
It has been tried in the past, for example in [4], to tune
word pronunciations.  Our approach produces a set of
word-independent phonetic transformation rules that
capture the ways in which sequences of phones in the
training set are transformed into other sequences.
Moreover, the transformations can be context-dependent.
That is, they are qualified by the neighboring phonemes,
and can only be applied in selected contexts.

Transformation rules may be applicable entirely within a
word, or span across word boundaries.  In the first case,
they can, of course, be incorporated statically in the
lexicon.  In the second case, the rules must be invoked
dynamically in a speech recognizer at run time, because
the contexts are not known beforehand and are too
numerous to be enumerated exhaustively.

As an aside, even if improving the pronunciation of a
particular word has only a minor effect on recognition
accuracy, it is still desirable to incorporate it in the
lexicon.  For example, a word may be correctly
recognized in spite of an inferior pronunciation.
However, the acoustic likelihood of the sentence it
occurred in would be worsened and increase the chances
of an error elsewhere in the utterance.  Secondly, since
the acoustic models are also trained from a given
lexicon, they can benefit from an improvement in the
latter.  However, the results presented in this paper are
without any retraining of the acoustic models.

The rest of this paper is organized as follows.  In Section
2 we describe the details of the pronunciation learning
mechanism and the extraction of context-dependent
pronunciation rules.  In Section 3 we provide several
results; the specific modifications applied to the lexicon
as well as their effect on recognition accuracy on
independent data.  We conclude the paper in Section 4.

2. PRONUNCIATION LEARNING

In this section we describe our process for tuning the
pronunciation of words encountered in the training data,
as well as extracting context-dependent transformation
rules that can be applied to the entire lexicon.



2.1. Processing of Training Data

Our procedure for the identification of pronunciation
errors is straightforward and has been used before in [4],
as mentioned.  We extend it to generate word-
independent pronunciation transformation rules that are
context-dependent.  This training process is applied to a
large volume of pre-transcribed data.  It consists of the
following steps:
1. Perform a forced-recognition of the training speech

data using the corresponding transcripts and an
initial lexicon.  The result is a time-segmentation for
each word instance (and its phoneme sequence) in
the training data.

2. Decode the training data using an all-phone
recognizer, producing the best possible phonetic
transcription for each utterance.

3. Time-align the all-phone recognition result to the
forced recognition result (using a conventional
dynamic programming, or DP, algorithm).

4. For each word segment in the forced recognition
result, extract the corresponding segment from the
all-phone result as indicated by the above alignment.
This is the observed pronunciation for the word.

5. Identify the error regions in the DP alignment.  An
error region is a maximal contiguous sequence of
phonemes in the forced recognition that is different
from the corresponding all-phone segment.  An error
region, together with its left and right phonetic
contexts, forms a context-dependent pronunciation
transformation rule.

We stress that transformation rules are derived without
regard to word boundaries, i.e., purely from differences
in phone sequences.  Hence, they are applicable to any
relevant word or phrase derived from the lexicon, not
just those that occur in the training data.

2.2. Extracting Pronunciations

The observed pronunciations obtained for individual
words in Step 4 above can be incorporated directly into
the lexicon.  However, the observed pronunciation of a
word may differ from its lexical definition for two
reasons: a genuine difference between the lexical entry
and what was actually spoken, or an error in the all-
phone recognition.  Clearly, the latter kind is spurious
and should be separated from the former.  This is indeed
possible because a genuine difference in pronunciation
would show up as a systematic and predictable pattern,
while all-phone errors would exhibit a somewhat random
behavior.  With enough training data, the systematic
changes can be isolated based on their higher frequency
of occurrence.  The details are covered in Section 3.1.1.

Even if the lexicon is well tuned to begin with, and there
are few corrections to it, the above process is useful
because it serves as a sanity check on the basic principle
of producing pronunciations from all-phone results.   In
other words, given a good quality lexicon, most observed

Occurrence
count

Total
words

Existing
pron.

New
pron.

10 2949 2812 (.95) 777
20 1739 1698 (.98) 308
30 1260 1236 (.98) 188
40 998 985 (.99) 123
50 829 820 (.99) 90

Table 1:  No. of words (total, existing pronunciations,
new pronunciations) with different occurrence counts.

pronunciations should already exist in it if the process is
reliable.  This aspect is also covered in Section 3.1.1.

In the case of the transformation rules, also, one must
rely on frequency of occurrence to isolate the genuine
cases of pronunciation transformation.  Otherwise, errors
in all-phone recognition would corrupt the results.

3. EXPERIMENTS AND RESULTS

We applied the processing described in Section 2 to the
Wall Street Journal SI-284 training set ([7]).  This set
consists of a little under 36K sentences, with about 800K
word or 2,800K phoneme occurrences.  The number of
distinct words is a little under 14K.  The all-phone
recognition was performed using fully continuous,
triphone acoustic models trained on the same data.  The
raw phoneme error rate was about 18% (i.e., the result of
the DP alignment between the forced-recognition and
all-phone results, step 3, in Section 2.1).  It reflects both
all-phone recognition errors as well as genuine
differences between actual and lexical pronunciations.

3.1. Details of Pronunciation Generation

Table 1 shows the raw performance of the pronunciation
extraction procedure.  It is best explained by example.
Taking the first row, a total of 2949 distinct words
occurred at least 10 times in the training set.  The
observed word pronunciations were separated into those
already existing in the lexicon, and those that did not.
2812 distinct words that had existing pronunciations
occurred at least 10 times, and 777 words with new
pronunciations were observed at least 10 times.  (The
sum of the latter two is greater than the first since the
same word can show up in both the categories, with
different pronunciations.)

As the minimum occurrence count is increased, the ratio
of words with existing pronunciations to total words
(shown in parentheses) gets closer to 1.  It demonstrates
that above a certain minimum count, the procedure picks
the correct pronunciation with very good accuracy.

3.1.1. New Word Pronunciations

The raw set of new word pronunciations were pruned to
eliminate spurious pronunciations as follows:



Word New Pronunciation
Thousand 7+�$:�=�$;�1

Hundred ++�$+�1�'�$;5�''

Financial )�$<�1�$(�1�6+�$;�/

Asked $(�6�7'

July -+�$;�/�$<

Actually $(�.�6+�$;�/�,<

Table 2: Sample new pronunciations.

1. New pronunciations that occurred fewer than 20
times or less than 5% of the total occurrences of the
word were eliminated.

2. If an observed pronunciation was identical to an
existing lexical entry for a different word, it was
dropped to minimize the risk of acoustic confusion.

3. The remaining list checked by hand and unlikely
pronunciations were dropped.

As a result, 144 new pronunciations were selected for
addition to the testing lexicon.  Table 2 lists a few
examples (using the CMU Sphinx phone set, see [8]).

3.1.2. Context-Dependent Transformations

Count Lexical phone
Sequence

All-phone
sequence

790 1�''�6 1�6

703 ,;�1�. ,;�1*�.

171 ,+�7'�,; ,+�';�,;

156 $;�6�6 $;�6

Table 3: Sample phone sequence transformations.

Similarly, we obtained pronunciation transformation
rules from the high-count error regions.  About 200 of
them occurred 100 or more times. Table 3 lists a few
rules and the frequency of their occurrence in the
training set.  Most transformations consist of a single
phoneme being either substituted with another or entirely
deleted in specific contexts.  By manual inspection, we
further classified the rules into the following categories:
• Stop deletion: Stop phonemes entirely deleted,

especially at word ends when preceded and followed
by non-vowel phonemes.  For example, in the first
row in Table 3, the DD phoneme is dropped.

• Geminates: Identical or related phonemes merged at
word boundaries (e.g., as in LAST TIME).

• Contractions: A series of stop phones contracted
into a single stop  (e.g., ASKED sounds like AST).

• Substitutions: E.g., an N at the end of a word is
transformed into an M when following by a P or a B
(IN PERFECT may sound like IM PERFECT).

We concentrated on geminates and stop deletion in the
recognition experiments.

3.2. Recognition Experiments and Results

The new pronunciations and transformation rules were
applied in recognition experiments in three ways:

New
Pronunc.

Geminate
Merging

Stop
Deletion

Baseline err 31/746 16/746 21/746
Corrected 8 (26%) 1 (6%) 6 (29%)
Introduced 3 3 6

(a)
Baseline err 110/1917 ?/1917 ?/1917
Corrected 21 (19%) 6 (?) 13 (?)
Introduced 23 1 17

(b)
Baseline err 59/1199 16/1199 65/1199
Corrected 23 (39%) 3 (19%) 16 (25%)
Introduced 14 3 18

(c)
Table 4: No. errors corrected and introduced by lexical

modifications. (a) 1996 broadcast news devtest F0,
(b) F1 conditions, (c) 1994 H1-C0 test set.

1. The observed word pronunciations were added to
the test lexicon and used during recognition.

2. The geminate and stop-deletion models were
independently incorporated into the recognition
algorithm and tested.

3. Hand-selected transformation rules were applied to
chosen words of the test lexicon (without reference
to context), and tested.

The test sets were chosen from the following:
1. The DARPA 1996 broadcast news development and

test set’s F0 and F1 conditions [5].  F0 is clean, high
quality, prepared speech, and F1 is similar but
spontaneous speech.  Uses a 51K word vocabulary.

2. The DARPA 1994 H1-C0 test set [7]; read speech
from business news; pre-defined 20K vocabulary.

They were decoded using the Sphinx-3 decoder with
fully continuous acoustic models ([5]).

Table 4 shows the number of baseline word errors that
could have been corrected by each of the techniques., on
several test sets.  (E.g., the first entry 31/746 means that
31 out of a total of 746 errors could have been corrected
by the new pronunciations added.  These figures were
determined manually, and were not available for all test
cases.)  The table also shows the number of errors
actually corrected in each case.  The numbers in
parentheses show the fraction of correctable errors that
were actually corrected.  Clearly, they are quite
significant.  Unfortunately, in most cases there were a
comparable number of new errors introduced,
substantially or completely negating the gains.

The context transformation rules were also applied to
isolated word pronunciations, as mentioned.  In
particular, they indicated the occurrence of displaced
stress; i.e., a word being stressed at the “wrong” place.
The 27 most frequent rules were processed by hand and
resulted in the addition of about 920 new pronunciations
to the 1996 evaluation 51K lexicon.  (Most of them
turned out to be corrections to existing pronunciations.)
For example, the pronunciations with a dropped T:



(17(5 (+�1�$;5
$7/$17$ $;�7�/�$(�1�$;

were created in this manner.

The new lexicon was tested on the 1996 broadcast news
evaluation’s F0 and F1 conditions.  The word error rates
for the two conditions changed from 28.9 and 33.6 in the
baseline to 28.8 and 34.0, respectively.

3.3. Discussion

Overall, the experimental results are inconclusive.
However, from a detailed analysis of the errors, similar
to [9], we obtained the following insights.

The generation of new word pronunciations does work.
There is a small overall gain on the three test sets.
Moreover, even though the same words may be
recognized, the new pronunciations are preferred in
about 2.3% of the total words.  Finally, the acoustic
likelihood is improved in about 95% of the utterances in
the H1-C0 test.  These facts indicate that the techniques
do help, but there are confounding factors.

Let us consider the context-dependent pronunciation
transformations.  Both geminate merging and stop
deletion result in effectively new pronunciations that can
conflict with existing ones.  For example, ATROCITIES
SINCE and ATROCITY SINCE became phonetically
indistinguishable after the S phones in the former were
merged.  Hence, both have identical acoustic likelihoods,
with only the language model discriminating between
them.  More generally, the transformations considered,
when applied to words that differ only in case, tense, etc.
effectively produce several homophones.  This is one
possible source of errors.  A detailed examination of the
language model probabilities provides no definite
answers at this time.

Secondly, short words often behave as garbage models;
they readily substitute for unintelligible portions of
speech.  As both forms of pronunciation transformations
shorten the average duration of words, the number of
garbage words covering the same portion of speech rises.
This also increases the word error rate.

Finally, it is possible that the context constraints
employed are too weak and the transformations should
be applied more restrictively.  Also, the experiments
have been conducted with no retraining of the acoustic
models after tuning the lexicon.  Both these questions are
under investigation.

4. CONCLUSION

We have shown the use of all-phone recognition on large
volumes of training data to generate word pronunciations
as well as context-dependent transformation rules that
translate phone sequences into others.  Such rules can be
applied to arbitrary words or word sequences to model

the dynamic patterns of fluent speech, in which word
pronunciations are influenced by neighboring words or
phonemes.  We derived 144 new pronunciations and
almost 1000 transformations from the Wall Street
Journal SI-284 training data.  The latter were eventually
condensed into a few broad categories of geminates, and
stop deletion in non-vowel context.  Tests on broadcast
news and WSJ data using these modifications show that
the transformation rules have significant positive and
negative impact on recognition.  We believe the negative
impact is effectively due to the creation of a large
number of homophones.  It is probably necessary to
further restrict the transformation rules contextually.
Also, retraining the acoustic models with the modified
lexicon should give us a clearer view of the benefits of
the approach.
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