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ABSTRACT

In this paper a method for generating word pronuncia-
tion networks for speech recognition is proposed. The
networks incorporate different acceptable pronunciation
variants for each word. These variants are determined by
applying pronunciation rules to the standard pronunciation
of the words. Instead of a manual search, an automatic
learning procedure is used to compose a sensible set of
rules. The learning algorithm compairs the standard pro-
nunciation of each utterance in a training corpus with its
auditory transcription (i.e. ‘how should it be pronounced’
versus ‘how was it actually pronounced’). It is shown that
the latter transcription can be constructed with the assis-
tance of a speech recognizer. Experimental results on a
Dutch database and on TIMIT demonstrate that the pronun-
ciation networks reduce the word error rate significantly.

1. INTRODUCTION

In most continuous speech recognizers, the acoustic mod-
els are based on sub-word units (phones, syllables,...).
Hence, in order to recognize words, one needs word mod-
els describing the pronunciation of the words in terms of
these units. In their most simple form, the models allow
one pronunciation for each word. However, the actual
pronunciation of a word may differ significantly from the
prescribed one. For some words several widely accepted
pronunciation variants may exist; those can be considered
as intra-word variants. Coarticulation between words can
introduce even more pronunciation variations; these can
be viewed as inter-word pronunciation variations.

Modeling all the acceptable pronunciations of the words
[1, 2, 3] is likely to result in a higher recognition accu-
racy, since there is more chance that the pronunciation
matching the uttered speech is accommodated. The more
discriminative the recognizer is, the more important this
closer match may be.

We developed a method for generating word pronunci-
ation networks representing different possible pronuncia-
tions of each word. The networks are generated automat-
ically, starting from a single ‘standard’ pronunciation of
each word. The pronunciation alternatives are produced
by applying pronunciation rules to the standard pronun-
ciation. These rules actually rewrite the standard pro-

nunciation. Although such rules may be available from
phonology, we prefer to learn them from a training set.
Such an automatic training procedure facilitates the adap-
tation of the recognizer to new tasks and/or languages.
Moreover, the pronunciation variants must fit in a prob-
abilistic framework. Therefore one needs to know the
likelihood that a rule has to be applied. This information
can easily be gathered during the training procedure. In
[4], we proposed a preliminary version of the pronuncia-
tion rule learning algorithm. Since then, we have further
improved this algorithm, as will be described in the fol-
lowing sections. We will assume the sub-word units to be
phones. With some appropriate modifications, the same
method can be used with other types of sub-word units.

2. LEARNING PRONUNCIATION RULES

We adopt the following form for the pronunciation rules:

LFR! F 0

This rule reads as follows: the focus F, when preceded by
a left context L and succeeded by a right context R, can
be modified to F 0. F contains one or more phones and
possibly a word boundary (further on denoted as %). L

and R contain 0 or more phones. The part LFR is called
the rule condition, F 0 is called the rule output. In the rule
condition, we underline the part that is modified by the
rule. This way it can be distinguished from the context
parts, which are not modified.

In order to postulate acceptable rules, two possible pho-
netic transcriptions of each training utterance, a standard
transcription Tst and a more realistic auditory transcrip-
tion Tau, are compared to one another. Tst is composed of
the standard pronunciations (retrieved from a dictionary
and supplemented by the word boundary symbol %) of the
words in the utterance. In the next section we will explain
how Tau is obtained.

The transcriptions Tst and Tau are aligned with each
other. The alignment procedure is a dynamic program-
ming search, returning the path with the minimal total
cost. This cost is the sum of local contributions given
by 0 if the two compared phones are identical and 1 oth-
erwise. The alignment path shows which phones in Tst
correspond to which phones in Tau. Any conflict emerg-
ing from this alignment — i.e. a substitution, insertion of



deletion of a phone in Tau — leads to one or more pro-
nunciation rules. Let F be a phone or group of phones in
Tst differing from the corresponding phone(s) in Tau. We
consider four different rule conditions Ci (i = 1; :::; 4):

� C1 = F : no context;

� C2 = pF : left context (p is the phone preceding F

in Tst);

� C3 = Fq: right context (q is the phone succeeding
F in Tst);

� C4 = pFq: left and right context.

Each Ci introduces a rewrite rule Ci ! F 0 with F 0 being
the phone(s) in Tau corresponding to F .

After processing a representative training set in the
above manner, a possibly large number of rules is ob-
tained. Generally this set will be too large to be practical,
and moreover it will contain rules that are too specific.
In order to prune rather unlikely pronunciation rules, we
gather two different frequency counts during the training:

1. The number of times the different rule conditions oc-
cur in theTst transcriptionsof the training utterances.
These numbers indicate the coverage of each rule.

2. The number of times the rule had to be applied on
the training utterances, given that the rule condition
was observed in the standard transcriptions. From
these numbers we compute the rule application like-
lihood by dividing by the frequency count of the rule
condition.

On the basis of the coverages and the application like-
lihoods, a considerable part of the rules can be rejected.
Indeed, it is feasible to remove rules with a very low cover-
age, as the loss of information will be minimal. Similarly,
rules with a small application likelihood describe a very
rare transformation and can therefore be excluded as well.

In a further pruning step we try to remove specific rules
in favor of more general ones. For that purpose we define
the term parent rule of a rule. Rule Ra is a parent of rule
Rb, if Ra and Rb have the same focus F and the same
outputF 0, and if moreoverRb is obtained by extending the
context of Ra with the appropriate phones. Now suppose
that the application likelihood of the parent rule Ra is
similar (within some limits) to the one ofRb. In such a case
it seems acceptable to removeRb, since its transformation
is already accurately described byRa: applyingRa yields
the same result, with the same likelihood.

The above pruning steps reduce the original set of rules
to a more compact and more general set. Note that, for
each rule condition appearing in this set, an identity rule is
defined implicitly (LFR ! F ). Obviously, some of the
rules can still be parent rules of others (but with a different
application likelihood). Evidently, if a particular rule Rb

is applicable to a given example, all of its parent rules are
also applicable. E.g. if ft%b ! d is applicable (like in
heft%be), the parent rulet%b! d is applicable as well.

In this case we would only apply the most specific rule, as
this one provides the maximum context overlap between
the rule condition and the example to be transformed.
Generally, we can maintain the following principle when
applying the rules: of all applicable rules, the ones being
parents of other applicable rules are not applied. Note that
still more than one rule can be applied to a given example,
but each applied rule will lead to a different output and will
be as specific as possible. This strategy has an important
consequence. Since the rule t%b ! d would not be
applied in the above example, it can actually be considered
as a rule*t%b!d, with* being any phone different from
f. Indeed, knowing that a more specific rule exists (ft%b
! d), the rule t%b! d will only be applied when the t
is not preceded by an f. If we do take this into account, it
becomes necessary to recompute the frequency counts on
the training data. Consider a particular training example
(i.e. a part of a transcription Tst and the corresponding
part of Tau). Let S be the set of rules that are applicable
to the example and return the correct result (i.e. the rule
condition and the rule output match the example), then
the example must only be counted as an example for the
most specific rule in S. This is the only rule in S that has
no parents in S.

3. DETERMINATION OF Tau

In the first version of our pronunciation rule learning al-
gorithm [4], we suggested to use an auditory transcription
Tau determined by a human expert. However, when man-
ually obtained transcriptions are not already available,cre-
ating them may be too costly a job. Hence we developed
an algorithm that relies on the speech recognizer outputs
in order to determine a reasonable auditory transcription
Tau for each training utterance.

For each utterance we start with Tst. From this stan-
dard transcription,a simple pronunciation network is built.
The network has an entry state and one additional state per
phone in Tst. Between two consecutive states, we put a
transition emitting the corresponding phone in Tst. A
deletion transition is added in parallel with each emitting
transition, thus allowing the deletion of the phone. Addi-
tionally, an insertion transition is provided on each state,
to allow the insertion of garbage units. Evidently, all
transitions in the model receive adequate transition prob-
abilities. The above explanation is depicted on figure 1.

Once the pronunciation network is constructed, a con-
strained alignment of the acoustic data with this network
is performed by the recognizer. The deletion and in-
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Figure 1: Pronunciation model derived from Tst = pqr;
� denotes a deletion transition.



sertion transitions in the model facilitate or improve the
alignment whenever the actually uttered phone sequence
differs from the expected sequence Tst. By examining the
alignment path, some hints for improving the Tst model
are collected:

1. A phone p modeled in Tst may appear deleted in
the alignment. It is possible that p was indeed not
pronounced. However, the deletion may also indicate
that a phone different from p was pronounced. For
that reason we supplement the deletion arc with one
transition for every phone different from p.

2. It may occur that the acoustic score on a segment s
is small for the phone p it is aligned with, while on
the other hand it is large for a phone q different from
p. In such case we add an extra transition emitting q
in parallel with the one emitting p.

3. Some segments in the utterance may not be aligned
with any phone in Tst. Hence at the appropriate
position in the model we insert an extra transition
emitting the acoustically most likely inserted phone.

In a second iteration the acoustics are aligned with the im-
proved model. The phone sequence along the alignment
path is proposed as Tau.

4. PRONUNCIATION NETWORKS

The set of pronunciation rules contains two types of rules:
word internal rules and inter-word coarticulation rules.
The latter ones describe pronunciationchanges at the word
boundaries. While the word internal rules are applied to
individual words, the coarticulation rules are applied to
word pairs. This results in a number of pronunciation
variants. All variants of a word are compiled into a pro-
nunciation network, using an algorithm related to the one
presented in [3]. Obviously, we must take into account
the likelihood of the pronunciation variations, determined
by the application likelihoods of the applied rules. Like-
lihoods originating from coarticulation rules are not con-
sidered at this point since we will combine them with the
language transition probability between words (see fur-
ther). First, we build a left-to-right model for each variant
(as in figure 1, but without deletions and insertions). At
the entry and the exit of each model, we include the iden-
tity of the applied coarticulation rule. Transitions with an
emission originating from a word internal rule receive a
probability equal to the application likelihood of that rule;
all other transitions have a probability equal to 1. A tran-
sition is now identified by its emission and its probability.
Second, we combine these models into a tree, going from
left to right. There is a new root node for each rule by
which the word can be entered. Finally, nodes that have an
identical tree attached to them (seen to the right, including
the rule identities on the exits) are merged. An example
is shown in figure 2.

The resulting models have different conditional entries
and exits: a particular exit of a model can only connect to a

(a)

(b)

Figure 2: Generation of Pronunciation Network for
the variants graft, grAft, Hraft, HrAft, gravd,
grAvd, Hravd and HrAvd. (a) Situation after tree en-
coding. (b) Situation after merging states. The dashed
arrows are conditional entries and exits; indicated are the
indices of the rules from which they originate (ST = stan-
dard pronunciation).

‘compatible’ entry of an other model; this means that they
originate from the same coarticulation rule. The transition
probabilityPt between an exit of a word and the matching
entry of another word is now given by (bigram grammar):

Pt = P (Rc; w2jw1) = P (w2jw1) � P (Rcjw1; w2)

The first factor originates from the grammar, while the
second one can be estimated by P (F 0

jLFR), i.e. the ap-
plication likelihood of the applied coarticulation rule Rc.

5. EXPERIMENTAL RESULTS

The recognizer used in the experiments is the Neural Net /
Dynamic Programming Hybrid Continuous Speech Rec-
ognizer, described in [5, 6, 7]. This recognizer adopts a
connectionist approach to model stochastic segments, im-
plying a fairly good discriminative behaviour. The system
is trained and tested on a Dutch (Flemish) database and
on the American English TIMIT database.

Three different recognizer setups are compared. In the
baseline system, the word models implement the standard
pronunciation of each word (although deletions and inser-
tions are allowed). In both the second and the third setup
we use pronunciation networks derived from pronuncia-
tion rules, but the rules are obtained in two different ways:
on the one hand from automatically generated auditory
transcriptions (PRONNET-AUTO), on the other hand from
manually determined auditory transcriptions (PRONNET-
MAN) that are available for both databases. Note that, on
average, the number of states in the pronunciation net-
works is just about 15% higher than in the corresponding
standard pronunciation networks, so there is little influ-
ence on the CPU cycles required for the recognition.

The Dutch training database has a vocabulary of 413
different words and contains speech material from 80 dif-
ferent speakers (13 sentences per speaker). About 500



Task 1 Task 2

WER Baseline 7.19% 24.73%
WER PRONNET-AUTO 4.60% 20.83%

Relative Improvement 36% 16%
WER PRONNET-MAN 3.97% 19.56%

Relative Improvement 45% 21%

Table 1: Word Error Rates (WER=D+I+S) and Relative
Improvement (compared to Baseline) when pronunciation
networks are used for Dutch tasks.

SX SI

WER Baseline 3.77% 13.45%
WER PRONNET-AUTO 3.10% 10.85%

Relative Improvement 18% 19%
WER PRONNET-MAN 3.28% 11.36%

Relative Improvement 13% 16%

Table 2: Word Error Rates and Relative Improvement
when pronunciation networks are used for TIMIT.

pronunciation rules survive the pruning; 80% of them are
coarticulation rules. Two different recognition tasks are
considered. In Task 1, the vocabulary is an extension of
the one of the training set (+15% new words). A bigram,
trained on a set of sentences different from the ones in
the training set, is used as the language model. Task 2 is
completely different from the training set. There are 80%
new words in the vocabulary. It is an ATIS-like task with
inherently more difficulties (pauses, noises, more confus-
able words, ill-formed sentences). A bigram language
model for this task is determined on a dedicated training
set. For each task a test set containing utterances from
10 different speakers is available. The recognition results
with the different recognizer setups are shown in table 1.

In the TIMIT case, the recognizer is trained on the SX+SI

training sentences. The vocabulary (6227 different words)
and the bigram language are both determined on this train-
ing set. The pronunciation rules are learned on the SX set.
About 750 pronunciation rules are retained; again 80%
are coarticulation rules. The recognition tests are run on
the SX, resp. SI test set. The results are shown in table 2.

These results indicate that dealing with the pronuncia-
tion variants does yield a significant improvement of the
recognition performance. Apparently, the proposed strat-
egy is capable of learning rather general pronunciation
rules. Indeed, even on Task 2 (Dutch) and on the SI task
(TIMIT) — tasks which differ strongly from the original
rule training set — there is still a significant reduction
of the word error rate. A more detailed investigation re-
vealed that the major part of the improvement originates
from the coarticulation rules rather than from the word
internal rules.

As to the different rule learning strategies, it appears
that the rules derived from automatically generated au-
ditory transcriptions (used in PRONNET-AUTO) perform
about equally well as the ones derived from manual tran-
scriptions (PRONNET-MAN). On TIMIT, the PRONNET-AUTO

setup even yields slightly better results while on the Dutch
task, the PRONNET-MAN setup performs best. One possi-
ble explanation is that the acoustic models for TIMIT are
better trained than those for the Dutch database. Hence
the automatic auditory transcriptions are more reliable for
TIMIT than they are for the Dutch task. It is very likely
that the automatic transcriptions catch some of the pecu-
liarities of the recognizer. This can explain why the setup
PRONNET-AUTO sometimes outperforms PRONNET-MAN.

6. CONCLUSION

In this paper we introduced a fully automatic method for
generating word pronunciation networks representing the
different pronunciation variants of the words. The net-
works are generated through pronunciation rules, which
in turn are learned automatically from a speech training
corpus. The learning algorithm relies on the outputs of
the speech recognizer. The method was tested on a Dutch
database as well as on the TIMIT database. The results
show that the pronunciation networks outperform single
pronunciation word models. Moreover, the pronunciation
rules appear to be general enough to remain effective on
new tasks with a vocabulary different from the one of the
training set.
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