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ABSTRACT
This paper describes the Bell Labs Russian text-to-speech sys-
tem, a concatenative system with extensive text-analysis capa-
bilities. The construction of Russian-specific modules will be
discussed, including the text-analysis module, the acoustic in-
ventory, the duration module, and the intonation module.

1. INTRODUCTION

The Russian Text-to-Speech system at Bell Laboratories
represents one of the 11 languages/dialects in our multi-
lingual text-to-speech system. All of these systems share
the modular architecture given below, described in more
detail in Olive and Sproat [4]:

� Text Analysis:Converts text into a linguisticanalysis,
including lexical properties of the words, and their
phonetic transcription.

� Duration: Assigns duration values to eachphone.

� Intonation: Generates fundamental frequency con-
tours for sentences.

� Amplitude:Produces an amplitude contour for each
sentence.

� Glottal Source:Generates glottal source parameters.

� Unit Selection:Converts phone strings into acous-
tic inventory elements, choosing the most appropri-
ate ones from the inventory.

� Unit Concatenation:Generates LPC parameters and
source-state information for the synthesizer.

� Synthesis:Reads the LPC parameters and source-
state and outputs speech.

One important property of this system is that none of these
modules are language specific. Rather they are table-
driven, loading language-specific data at runtime. This
property makes it easy to port the systems to different plat-
forms and to adapt it for specific applications. Adding new
languages requires constructing language-specific tables,
but does not require one to write language-specific code.

2. TEXT ANALYSIS

The Russian TTS system uses the same architecture for
text analysis as that of the German, French, Spanish, Ital-
ian, Romanian, Japanese and Mandarin systems. The
model, which is described more fully in [6], usesweighted
finite state transducers— WFST’s — to map between the
various levels of linguistic representation (orthographic
input, lexical analysis, phonetic transcription) necessary
for a linguistic description of the input. The WFST’s are
constructed using a lexical toolkit that allows declarative
descriptions of lexicons, morphological rules, numeral-
expansion rules, abbreviation expansion rules, phonologi-
cal rules, and so on.

More specifically, the system works as follows:

� The input text is represented as a (trivial) unweighted
acceptorI.

� Lexical analysis is performed using one or more lex-
ical analysis WFST’sL; Lex = �2[I � L] (theright-
hand projectionof the composition ofI with L),
defines a lattice of possible lexical analyses for the
given input. Lexical analyses may have associated
costs, meaning that some analyses will be cheaper
(more favored) than others, in the absence of contex-
tual information to decide among them.

� A set of ‘language model’ transducers� is composed
with Lex to (partially) disambiguate lexically am-
biguous forms using information from local context.
The lowest-cost path of the resulting (partially) dis-
ambiguated lattice is then selected, to produceLex0,
a unique lexical analysis.

� A set of one or more phonological transducers� is
composed withLex0 in order to produce the phonetic
transcription.

In the next few sections we present some details on each
of these components. We first present the work on lexical
analysis and phonological analysis, since these two com-
ponents are the most complete to date. We then discuss
prosodic phrasing, which is not currently incorporated
into the system though it is clear how to do it. Lamentably,
reasons of space do not allow us to discuss the complex
and interesting problem of contextual homograph disam-
biguation.



2.1. Lexical Analysis

An important distinguishing feature of our model of text
analysis is that unlike most TTS systems, we do not distin-
guish ‘text normalization’ — e.g., expansion of abbrevia-
tions or digit strings into words — from the rest of linguis-
tic analysis. So, the expansion of an expression like ‘20%’
is handled as part of lexical analysis, just as is the analysis
of an expression such asskidka (skidka) ‘discount’.1

One reason that we eschew the more traditional model is
that it simply does not work, and Russian provides some
of the clearest evidence for this claim. In order to decide
how to pronounce the abbreviation ‘%’ in Russian, one
generally needs to have a fairly detailed lexical analysis
of the words in the surrounding context. For example in
the expression20%skidka (20% skidka) ‘twenty percent
discount’, we find the percentage expression modifying a
following noun, in this case a feminine noun in the nom-
inative singular. Following completely general grammati-
cal principles of Russian, the percentage expression must
in this case be in anadjectival form, and must agree in
number, case and gender with the following noun: the cor-
rect form for ‘%’ here isprocentna� (procentnaja) ‘per-
cent+adj+fem+nom+sg’. If, however, the percentage ex-
pression is not modifying a following noun, it must appear
as a form of thenounprocent (procent). Which pre-
cise form is used depends upon which number proceeds
it, and the grammatical case assigned to the entire nom-
inal expression. For instance, if the nominal expression
‘20%’ occurs in a non-oblique case, then the wordpro-

cent itself must occur in the genitive plural formpro-
centov (procentov); if the expression were ‘22%’ then
the genitivesingular form procenta (procenta) would
be required. Such a situation is hopeless for the traditional
preprocessing model: instead one clearly must delay the
decision on how exactly to ‘normalize’ a symbol like ’%’
until one has enough information to make the decision in
an informed manner. Indeed, the lexical analysis WFST’s
for Russian simply transduce ‘%’ into all possible rendi-
tions of that symbol, and it is the job of the contextual
disambiguation (‘language model’) transducers to decide
which is the correct form. This they do by modeling each
of the cross-word grammatical cooccurrence restrictions:
so, for instance, a nominal form ofprocent is filtered
out when it precedes anoun.

As we have seen, selecting the correct form of an abbrevi-
ation in Russian depends on having a good lexical analysis
of the context. More generally, one also needs morpho-
logical analysis in order to correctly pronounce Russian
words. The main reason for this is that while stress is
not normally marked in the orthography of Russian, stress
placement is not ‘regular’ in that it cannot be predicted
from the phonological structure of the word alone: rather
it depends upon purely lexical features. For example, to
know that the stress in the wordkarandaxom (karan-
dashom) ‘with a pencil’ falls on the last syllable, one

1See also [7], which independently proposes a similar model.

needs to know thatkarandax ‘pencil’ belongs to a class
of nouns where the stress is placed on the case ending.
Since unstressed vowels tend to be quite heavily reduced
in Russian, misplacement of stress is quite noticeable; see
Section . In order to avoid stress errors, one (minimally)
needs a morphological analysis of all word — a non-trivial
task in Russian.

Our morphological analyzer derives ultimately from the
dictionary presented in [10]. Based on this dictionary, we
produced three main databases. The first part is simply
a list of stems tagged with relevant grammatical features,
including information on inflectional class affiliation. The
second is a set of tables — paradigms — expressing all of
the endings possible for a given lexical class. The third
database consists of morpholexical rules. The full de-
scription of Russian nouns requires 158 paradigms in our
description; this large number stems from the combina-
tion of several critical factors, including the type of the
stem (8), gender (3), animacy (2), and the accentuation
type (10). Adjectives required 42 paradigms, and verbs
55 paradigms. Completely irregular forms were simply
listed in separate files. All of this lexical information is
compiled into a WFST that maps each ordinary word of
text to its possible lexical analyses.

2.2. Word Pronunciation

The pronunciation of words in Russian depends upon two
kinds of information. The first can be described as lexical
information, and the second can be described in terms of
regular phonological rules.

Lexical information affecting pronunciation includes lexi-
cal stress, as we have seen, but it also includes information
on irregular or idiosyncratic spellings of certain sounds.
The best-known case is the pronunciation ofg (g) as /v/
when it occurs in the genitive endingsego/ogo (ego/ogo).
Thus, zemnogo (zemnogo) ‘earthly+masc/neut+gen+sg’
is pronounced as if it were writtenzemnovo. We code this
kind of informationin the lexicon, using special characters
that for lack of a better name we termarchigraphemes.
The entry for the genitive ending inzemnogo, for ex-
ample, is given asofg1go, where the symbolfg1g, is
mapped by the lexical transducers to orthographicg, but
phonological /v/. To take another example, the consonant
sequencevstv (vstv) is pronounced sometimes as /stv/,
sometimes (with regular devoicing of the first /v/) as /fstv/;
the distinction appears to be lexically determined. Thus
quvstvovat~ (chuvstvovat’) ‘to feel’, is pronounced as
if it were writtenchustvovat’, whereas invdovstvovat~
(vdovstvovat’) thevstvsequence is fully pronounced. We
handle these ‘silent’v’s by representing them in the lex-
icon asfv1g, which maps to orthographicv, but phono-
logical ;. Similar ‘archigraphemic’ devices are used to
describe other lexically conditioned pronunciations, in-
cluding the many cases of foreign-derived words that have
pronunciations that are not fully predictable from their
spellings.



Regular phonological processes, including palatalization
and voicing agreement in consonant clusters, reductions
of unstressed vowels, and such miscellanea as the reg-
ular reduction of clusters like /stn/ to /sn/, are handled
by rewrite rules, compiled into WFST’s using the algo-
rithm described in [2]. Information on both lexically con-
ditioned and regular pronunciation was derived in large
part from [1, 3].

2.3. Phrasing

The problem in prosodic phrasing prediction is to de-
termine, for each wordboundary, whether it represents
merely a word boundary, or some higher prosodic break.
Similarly, one needs in general to determine if a punctu-
ation symbol (such as a comma) really corresponds to a
phrase break or not. The problem is thus essentially one
of lexical disambiguation, in this case of the material be-
tween words. Following [9], we have used a decision-tree
based approach in investigating Russian prosodic phras-
ing. A 40 thousand word database was selected and hand-
marked with the locations of weak and strong pauses. The
factors used to train the tree include part-of-speech tags in
a 4 word window, case tags in a 4 word window, accent in-
formation, punctuation, word length, sentence length, and
the distance from the beginning and the end of the phrase.
All length factors were coded in broad categories, other-
wise there would be a vast number of gaps in factor com-
binations that could lead to poor discrimination on new
data. In our data, we found that 1% of punctuation marks
— specifically quotation marks, commas, and dashes —
do not correspond to actual prosodic breaks; similarly 5%
of prosodic breaks correspond to no punctuation mark. In
cases where pausing is required but no punctuation mark
is present, 84% of the cases happen when the sentence is
at least 9 words long. The preferred location for phrase
break is after a noun, the six highest ranking sites being
between a genitive noun and a conjunct, a genitive noun
and a past tense verb, a nominative noun and a preposition,
a genitive noun and a preposition, a nominative noun and
a conjunct, and an instrumental noun and a past tense verb.
The prosodic phrasing prediction is not currently incorpo-
rated into the text analysis model. Doing so is nonetheless
fairly straightforward, given the algorithm for compiling
from decision trees into WFST’s presented in [5].

3. ACOUSTIC INVENTORY

Like other Bell Laboratories TTS systems, the Russian
synthesizer is a concatenative system using pre-recorded
acoustic inventory elements. The current system distin-
guishes 54 phones, and has around 1700 acoustic inven-
tory elements, which are primarily diphones.

We conducted several exploratory acoustic studies on the
Russian speaker to determine the optimal inventory for
the TTS system. Figure 1 shows the vowels and glides
in the Russian sound inventory with formant information.
The uppercase letters [A] [E] [I] [O] [U] represent soft
(palatalizing) vowels, while the lowercase letters [a] [e]
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Figure 2: The soft and hard vowel contrast in Russian.
Soft vowels are represented by uppercase letters while
hard vowels are represented by lowercase letters. Vowel
symbols mark median values (in Hz) in F1/F2 space.
Boxes delimit standard deviations.

[i] [o] [u] represent hard (non-palatalizing) vowels.2 [Y]
is the onglide before soft vowels, and [y] is the offglide.
Other symbols represent unstressed and reduced vowels.
Unstressed orthographic<a> in the word final syllable is
represented as [&]; unstressed orthographic<a> in other
positions and unstressed orthographic<o> merge to [@].
Unstressed orthographic<e> in the word final position
is represented by the caret, while unstressed orthographic
<e> in other positions merges with unstressed [i].

Figure 2 shows a very consistent trend of centralization
in the soft vowel series, in comparisons to correspond-
ing hard vowels. Only stressed vowels are included in
this plot. This tendency is most pronounced in [I], [E],
and [A], where centralization is observed in both F1 and
F2, and the vowel spaces of the soft and hard counterparts
hardly overlap. For the rounded vowels [U] and [O], cen-
tralization is only observed in the F2 dimension. The con-
sistency and the magnitude of the formant discrepancies
in the Russian soft and hard vowels make it necessary to
represent these two sets of vowels separately in the acous-
tic inventory.

Once the vowel and glide inventory is determined, target
formant values are established for each of them via data
analysis and listening tests. The inventory is chosen semi-
automatically by ranking vowel candidates according to
the goodness of their first three formants, i.e, how close
they are to the target formants.

4. DURATION

Segmental durations are estimated from 31,000 phones
recorded for the acoustic inventory database. Multiplica-

2In the TTS system the sound [i] is further split into stressed and
unstressed versions, because the unstressed one is centralized. This point
is not discussed in detail here for lack of space.



Formants of Vowels and Glides
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Figure 1: The vowel and glide inventory of the Russian TTS system. The sound symbols are listed on the X-axis, and
numerals 1, 2, 3 above each symbol mark the median F1, F2, and F3 values for that sound.

i u o e a
119 119 130 131 144

I U O E A
113 127 130 126 138

Table 1: Vowel Duration in Msec

tive models are fitted separately for major classes of
sounds, such as vowels, the closure portion of stops and
affricates, the burst portion of stops and affricates, frica-
tives, sonorants, and trills. The independent factors used
to estimate segmental duration includes the identity of the
phone, the major phone class of the previous and the fol-
lowing phone, syllable types, stress, and positional factors
including the distance of the phone from the stressed syl-
lable, and whether the phone in question is in the initial or
final position of a syllable, a word, or an utterance. The
overall correlation between the observed and the predicted
duration is 0.73, and the rms is 22 msec.

Table 1 gives some of the estimated vowel duration in
msec, which are corrected for the effect of factors. The
duration correlates inversely with vowel height: low vow-
els tend to be longer, while high vowels tend to be shorter.
This is a tendency observed in many languages, including
English.

5. INTONATION

The intonation module assumes the model described in
[8], where the intonation contour is computed by adding
accent curves to the phrase curve. The accent curve is an-
chored on an accent group, a unit consisting of a stressed
syllable and all following unstressed syllables. Both the
peak location and the shape of the curve are estimated
from weighted durational parameters: the duration of the
stress group, the duration of the onset, and the duration
of the sonorant portion of the rhyme. The shape of the ac-

cent curve can be warped by changing the weights, and the
pitch height can be shifted up or down. In Russian, non-
final accent curves have a more gradual falling slope than
nucleus accent curves. Also, in comparison to English,
the peak placement in Russian accent curve is earlier.
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