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ABSTRACT

This paper presents a new training approach for improv-

ing recognition of speech under emotional and environ-

mental stress. The proposed approach consists of training

a speech recognizer with synthetically generated speech

under each stress condition using stress perturbation

models previously formulated in [4, 1]. The perturbation

models were previously formulated to statistically model

the parameter variations under angry, loud, and Lom-

bard e�ect and were employed in an analysis-synthesis

scheme for generating stressed synthetic speech from iso-

lated neutral speech. In this paper, two training ap-

proaches employing the synthetically generated stressed

speech are presented consisting of : speaker-independent,

and speaker-adaptive training methods. Both approaches

outperform neutral trained recognizers when tested with

angry, loud, and Lombard e�ect speech.

1. INTRODUCTION

The variability introduced by a speaker under stress

causes the performance of recognizers trained with neu-

tral tokens to degrade. Training a model with speech

produced under the same testing conditions can lead to

improved recognition performance. However, such speech

data is not always readily available for training. Sev-

eral approaches have been previously proposed for im-

proving stressed speech recognition. An approach referred

to as multi-style training by Lippmann et al. [11] was

considered for improved speaker-dependent recognition of

stressed speech. This method required speakers to pro-

duce speech under simulated stressed speaking conditions

and employed these multi-styles within the training pro-

cedure. A later study showed that multi-style training

actually degrades performance if employed in a speaker-

independent application [12]. Hansen and Clements [10]

proposed compensating for formant bandwidth and for-

mant location in the recognition phase. Front-end fea-

ture modi�cation of stress speech in the recognition

phase such that stress speech recognition parameters re-

semble that from neutral speech is another approach con-

sidered by Chen [6], Hansen and Bria [9], and Hansen [7]

to improve recognition performance under stress. These

methods all result in improved recognition performance.

An alternative approach, referred to as the token genera-

tion method, altered both duration and mel-cepstral pa-

rameters of neutral training data to statistically resemble

stressed speech data [2]. The token generation training

method, which was tested on a limited vocabulary and

was text-dependent, improved isolated word recognition

for slow, loud, and Lombard e�ect when compared to a

neutral trained system.

When the training corpus consists of only neutral

speech, we propose generating synthetic stressed speech

for training. The synthetic stressed speech is obtained

here by perturbing the available neutral speech data us-

ing hidden Markov model (HMM) perturbation models

which have been trained with the wide range of natural

variations that exist between neutral and stressed speech

parameters. The work in this paper di�ers from the ap-

proaches mentioned previously in that: (1) it eliminates

the need for collecting stressed tokens for a particular

speaker for training, and instead employs synthetically

generated stressed speech for training, (2) it applies the

knowledge of how other speakers modify their speech un-

der stress to the neutral speech of new input speakers,

and (3) a much larger number of training tokens can be

made available. The latter is due to the HMM regenera-

tive property which can be used to produce an unlimited

number of perturbation vectors to modify neutral speech,

and hence generate stressed synthetic speech.

In this paper, HMMs are employed for two purposes.

It is important to clearly distinguish between the two ap-

plications. In the �rst application, HMMs are used for

modeling speech parameter variations under stressful con-

ditions, and then for regenerating observations which are

statistically equivalent to the training data. These obser-

vations are employed for stressed speech synthesis. In the

second application, the HMMs are employed for isolated

word recognition of neutral and stressed speech.

The remainder of this paper is organized as follows.

Section 2 presents the modeling and HMM training of

speech parameter variations between neutral and stressed

speech. In Section 3, we present the framework for speak-

ing style modi�cation of input neutral speech using the

trained HMM perturbation models. Section 4 discusses

the HMM topology, and the feature set used for training

the recognizer. In Section 5, the results of employing syn-

thetic stressed speech for training are presented. Finally,

conclusions are drawn in Section 6.

2. STRESS PERTURBATION MODELS

This work is based on a previously proposed approach for

modeling variations in speech parameters under stress us-

ing hidden Markov models (HMMs) [4]. The variations

in pitch contour, voiced duration, and spectral contour

were modeled for the purpose of stressed speech synthesis.

Here, the generated synthetic stressed speech is employed

for improved recognition performance. In the training



phase, the HMM models were trained with the variations

that occur between neutral and stressed speech rather

than with actual parameter values since this will vary

from speaker-to-speaker. The stressed speaking styles

evaluated were angry, loud, and Lombard e�ect. The fol-

lowing �ve separate perturbation models were trained for

each stressed condition : (i) voiced duration variation, (ii)

pitch contour perturbation, (iii) derivative of pitch con-

tour perturbation, (iv) explicit state occupancy for pitch-

perturbation HMM, and (v) spectral contour mismatch.

The advantages of our modeling approach are the fol-

lowing: (i) variations in actual speech parameters are be-

ing modeled, and therefore the models are not speci�c to

a text-to-speech system, or to a voice coder, (ii) the ap-

proach is not dependent on a particular speaker, phoneme

class, or word, (iii) the HMM models represent the wide

range of parameter variations that exist between neutral

and stressed speech (not a �xed perturbation vector), (iv)

the HMM models can reproduce unlimited observation se-

quences with the same statistical properties as the train-

ing data (due to the regenerative property of HMMs), and

hence a single neutral word can be perturbed in more than

one way, and �nally, (v) a larger database of stressed syn-

thetic speech can be generated from an originally smaller

neutral data set.

After training, and at the perturbation stage, the HMM

perturbation models are employed to statistically gener-

ate perturbation vectors possessing the same statistical

properties as the training data which are used to modify

the speaking style of isolated neutral words. Due to the

regenerative property of the HMM, more than one per-

turbation vector can be generated for each neutral word,

resulting in stressed synthetic speech with di�erent lev-

els of stress. Hence, the HMM modeling approach allows

for a broader representation of the variations under stress

than a �xed feature transformation approach which was

proposed in an earlier work [5].

3. GENERATING SYNTHETIC STRESSED

SPEECH FOR TRAINING

In this approach, we produce synthetic speech tokens for

use in training. The HMM-based perturbation models

are integrated into a single overall algorithm employing

pitch1, duration, and spectral contour perturbation, as

shown in Figure 1, in order to generate stressed speech

from neutral speech. The voiced duration distribution,

pitch perturbation derivative, and state occupancy model

are combined into a single algorithm to generate pitch

perturbation pro�les. In order to generate a pitch per-

turbation pro�le, three steps are necessary: �rst, the to-

tal number of observations to be produced by the whole

HMM sequence is determined, second, the number of ob-

servations to be generated by each HMM state is deter-

mined, and �nally, a procedure to order these observations

is established. After the duration and pitch perturbation

1Although current HMM-based speech recognition sys-
tems do not include pitch information as part of the fea-
ture set, pitch and prosodic information is important for
speech understanding systems.
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Figure 1: Speaking style modi�cation using HMM-based
perturbation models.

step, a spectral perturbation vector is generated for per-

turbing the spectral contour in the frequency domain. A

single spectral perturbation vector is employed across the

whole word. A more detailed discussion on each step is

presented in [3, 4].

By applying the synthesis steps shown in Figure 1, a

total of 6480 synthetic stress tokens are generated from

neutral speech for the three stressed speaking conditions

(2160 tokens/style). These tokens are generated by per-

turbing a 24-word vocabulary spoken by a group of nine

general American speakers where each word is repeated

ten times. The speech database employed in these evalu-

ations is SUSAS : Speech Under Simulated and Actual

Stress [8]. The vocabulary consists of mono and multi-

syllabic words. A common highly confusable vocabulary

set of 35 aircraft communication words make up the data

base (e.g., /go-oh-no/,/wide-white/,etc). The generated

stressed synthetic speech is employed next for training a

speech recognition system.

4. RECOGNIZER TRAINING

In this study, two training approaches are considered. The

�rst approach assumes that no neutral or stressed training

speech is available from the input speaker, and hence all

recognition evaluations are speaker-independent. The sec-

ond approach assumes that only neutral speech is avail-

able from the input speaker and that the neutral and syn-

thetic stress models will be adapted to the input speaker.

A 24-word HMM-based recognizer is formulated using a

variable state number, left-to-right model, with 2 continu-

ous mixtures per state. The features used for training and

recognition are 8 LPCC, �LPCC, energy, and �energy.

In the �rst scheme, the HMM models are trained in a

round-robin scheme with eight speakers while the ninth



Testing HMM Models Trained with

With Neutral Synthetic Stress Orig. Stress

Neutral 92.13% x x

Angry 78.94% 82.00% 85.88%

Loud 82.87% 86.34% 90.51%

Lombard 90.05% 89.81% 92.59%

Table 1: Performance of speaker-independent models
trained with neutral (1st column), synthetic stress (2nd

column), and original stressed speech(3rd column).

Testing HMM Models Trained with

With Neutral Speech Synthetic Stress

Neutral 99.31% x

Angry 80.09% 85.88%

Loud 85.65% 91.67%

Lombard 94.68% 94.91%

Table 2: Performance of speaker-dependent neutral
trained models (1st column), and speaker-adaptive syn-
thetic stress trained models (2nd column).

speaker is left for open testing. A total of 10 tokens per

speaker are used for training each neutral word model,

resulting in 80 training tokens per word for the neutral

models. The original stress models are trained with 16 to-

kens per word, representing all the available data. A total

of 80 training tokens per word are employed for training

the speaker-independent synthetic stress models.

In the second scheme, the neutral models are speaker-

dependent and hence are trained with the neutral speech

of all nine speakers, resulting in 90 training tokens per

word. The synthetic stressed models are speaker-adaptive

and are trained with the perturbed speech of all nine

speakers, resulting in 90 training tokens per word.

5. RECOGNITION EVALUATIONS

The recognition evaluations are presented for both

speaker-independent and speaker-adaptive models. In

each evaluation, the performance of the neutral trained

models is compared to stress-dependent trained models.

The three stress conditions considered are angry, loud,

and Lombard e�ect. In all evaluations, the models are

tested with a total of 1728 tokens, or 432 tokens per style.

5.1 Speaker Independent Recognition

The baseline recognition performance of the speaker-

independent neutral trained recognizer is 92.13% when

tested with neutral speech. When neutral trained HMMs

are tested with angry, loud, and Lombard speech, recog-

nition performance drops to 78.94% for angry, 82.87% for

loud, and 90.05% for Lombard e�ect.

The original stress trained models improve recognition

over neutral trained models for all three speaking styles

(see 3rd column of Table 1). As expected, training and

testing under similar conditions improves recognition per-

formance. However, when original stressed speech is not

readily available for training, we propose training with

synthetic stressed speech. The synthetic stress trained

models outperform neutral trained models for loud and

angry speech as shown in Table 1 (2nd column).

5.2 Speaker-Adaptive Recognition

The recognition performance of speaker-dependent neu-

tral trained models of neutral speech is 99.31%. The

recognition rates drop by 19.22% for angry, 13.66% for

loud, and 4.63% for Lombard. Speaker-adaptive syn-

thetic stress trained models improve recognition for all

three speaking styles as shown in Table 2 (2nd column).

Detailed results comparing the performance of speaker-

dependent neutral trained models to speaker-adaptive

synthetic angry trained models when tested with angry

speech are illustrated in Figures 2 and 3. A total of 18

tokens per word are employed for recognition. The words

are listed in order of confusability (e.g., /six-�x/, /white-

wide/). The synthetic stress training method improves

recognition of highly confusable words (note the recog-

nition improvements for the words /three-degree/,/�x-

six/,/go-oh-hello-zero/).

5.3 Discussion

This approach generates synthetic stressed speech for

training by modifying pitch contour, duration, and spec-

tral contour of neutral speech. Perturbing actual speech

parameters as opposed to cepstral parameters, for exam-

ple, results in a more general approach that is applicable

to any speech recognition or understanding system, not

just MFCC based systems.

By comparing the performance of both speaker-

dependent and speaker-adaptive approaches, we conclude

that :

� Speaker-dependent neutral trained models achieve

better recognition rates than speaker-independent

neutral trained models for all four conditions tested

(neutral, angry, loud, and Lombard condition). This

indicates that speech produced under stressed con-

ditions possess speaker speci�c traits.

� High error rates result when testing neutral trained

models with stressed speech, indicating that stressed

speech possess additional characteristics which are

absent in neutral speech.

� Synthetic stress trained models achieve higher recog-

nition rates than neutral trained models especially

for highly confusable words.

� Adapting the synthetic stress trained models to the

input speaker achieves the highest recognition rates.

Therefore, we conclude that under stressed condi-

tions, speakers possess certain similar traits, and

hence the knowledge of how a group of speakers mod-

ify their speech characteristics under stress can be

employed to improve speaker-independent stressed

speech recognition performance.

� Speaker-adaptive models (2nd column of Table 2)

outperform original stress trained models (3rd col-

umn of Table 1). Recall that the original stress mod-

els are trained with actual stressed speech from a

group of speakers (excluding the test speaker). The
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Figure 2: Sample confusion matrix for speaker-dependent
neutral trained models tested with angry speech.

adaptive models, however, are trained with synthetic

stressed speech generated by applying the statisti-

cal variations that exist under stress onto neutral

speech (including that of the test speaker). There-

fore, modeling the parameter deviations that exist

under stress and employing that knowledge to adapt

the recognition models to a new speaker achieves a

better performance than directly training the rec-

ognizer with the actual stressed data. Our train-

ing method clearly eliminates the need for collecting

stress training data from the input speaker.

6. CONCLUSIONS

This paper has presented the �rst approach for improv-

ing stressed speech recognition by generating synthetic

stressed speech for training. Two di�erent training

approaches were considered. The �rst approach con-

sisted of speaker independent training and recognition,

and the second approach was speaker-adaptive. Both

training methods improve the recognition of angry, loud,

and Lombard e�ect speech. Speaker-dependent neu-

tral trained models outperformed speaker-independent

neutral trained models when tested with either neutral

or stressed speech. Speaker-adaptive synthetic stress

trained models outperformed all other models including

the speaker-independent original stressed trained models

for all three stressed conditions.
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