A PROSODY-ONLY DECISION-TREE MODEL FOR DISFLUENCY DETECTION

Elizabeth Shriberg'

Rebecca Bates®

Andreas Stolcke'

!'Speech Technology and Research Laboratory, SRI International, Menlo Park, California
{ees,stolcke} @speech.sri.com; http:/fwww.speech.sri.com
2Dept. of Electrical Engineering, Boston University, Boston, Massachusetts
becky@raven.bu.edu; hitp://raven.bu.edu

ABSTRACT

Speech disfluencies (filled pauses, repetitions, repairs, and false

starts) are pervasive in spontaneous speech. The ability to detect
and correct disfluencies automatically is important for effective
natural language understanding, as well as to improve speech
models in general. Previous approaches to disfluency detection
have relied heavily on lexical information, which makes them
less applicable when word recognition is unreliable. We have
developed a disfluency detection method using decision tree clas-
sifiers that use only local and automatically extracted prosodic
features. Because the model doesn’t rely on lexical information,
it is widely applicable even when word recognition is unreli-
able. The model performed significantly better than chance at
detecting four disfluency types. It also outperformed a language
model in the detection of false starts, given the correct transcrip-
tion. Combining the prosody model with a specialized language
model improved accuracy over either model alone for the detec-
tion of false starts. Results suggest that a prosody-only model
can aid the automatic detection of disfluencies in spontaneous
speech.

1. INTRODUCTION
1.1. Why detect disfluencies?

Disfluencies (filled pauses, repetitions, repairs, and false starts)
are prevalent in natural, spontaneous speech. The ability to detect
and correct disfluencies is clearly important for natural language
understanding, since most NLU systems are trained to interpret
fluent utterances. Recent studies suggest that disfluency detec-
tion is also relevant at other levels of speech processing. For
example, work on statistical language modeling has shown that
perplexity is reduced if disfluencies are removed from the N-
gram context [12]. Additional analyses suggest that speakers
hesitate before less-predictable words; thus, transition probabil-
ities should be dynamically adjusted in the vicinity of hesita-
tions [9]. Automatic detection of disfluencies could also benefit
higher-level modeling, for example, the automatic segmentation
of speech into sentences [11], and the modeling of discourse or
topic structure [13].

1.2. Why use prosody?

Various approaches to automatic disfluency detection have been
proposed in past work [8, 1,7, 4]. These studies have focused on
task-oriented dialog and have used a combination of lexical and
prosodic features. Results have shown a heavy reliance on lexical
information, although prosodic information was also useful when
constrained by the lexical information.

Such approaches are limited, however, if lexical information is
unreliable. In past work, a correct transcription was assumed—a
reasonable approach given that error rates for the corpora used
were quite low (typically under 5% word error rate). For more
natural speech corpora, even state-of-the-art systems are much
less accurate (e.g., about 40% WER for Switchboard as of 1996
[51). Thus, while prosody played a lesser role in studies based

on correct transcriptions, it could be an important knowledge
source for detecting disfluencies when word hypotheses are less
reliable.

The goal of the present work was to determine whether a
prosody-only model could provide information helpful for auto-
matic disfluency detection. In the context of this work, “prosody-
only” will refer to information that does not rely on word or phone
identity. The long-term goal is to develop a model using locally
and automatically extracted prosodic features, and to combine
this independent model with standard models in speech recog-
nition to increase detection accuracy over that of the separate
models alone.

2. METHOD
2.1. Data

Speech data consisted of more than 1000 conversations from the
Switchboard corpus of human-human telephone dialogs on pre-
scribed topics [3]. The data set represents 364 different speakers
(45% male, 55% female). Data were divided into randomly
selected independent training (500,000 words) and test (60,000
words) sets, with no speaker overlap. We prepared a speech
database that combined information from various sources, and at
various levels of resolution, including

o Word transcripts

o Hand-labeled disfluency annotations and sentence segmen-
tations prepared by the Linguistic Data Consortium (LDC)
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e Phone-level time marks produced by forced alignment of
the word transcripts using the SRI Decipher(TM) speech
recognizer, as used in the 1996 LVCSR evaluations [5]

e Raw acoustic measurements for the prosodic features de-
scribed below, such as fundamental frequency (FO) and
signal-to-noise ratio (SNR) values.

To limit computation and to facilitate integration with a lan-
guage model, our datapoints consisted of each inter-word bound-
ary, as determined by the forced alignments. We note that in
principle, however, the word information was unnecessary, since
we could have evaluated all features at, for example, each frame.

The disfluency types examined are shown below. The “extra”
words in each disfluency are indicated in boldface font. In our
experiments, the goal was to automatically detect the inter-word
boundary at the right edge of the boldface material (represented
by “+”):

Filled pause | he uh * liked it

Repetition he * he liked it
Repair he * she liked it
False start it was * he liked it




For each boundary in the database,! a feature vector was

recorded. The feature vector contained information extracted
from regions spanning from 70 frames (700 milliseconds) before
the boundary to 70 frames following the boundary. The bound-
ary itself could also contain a silent pause. The acoustic feature
types examined included duration, FO, distance from a pause,
and SNR features. In addition, “gender” features included the
gender of the speaker as well as that of the listener.

Duration features included the duration of pauses, vowels, and
continuously voiced segments preceding the boundary. Although
vowel durations and pause durations were based on information
from the forced alignments, they did not rely on phone or word
identity, and we expect that pause alignments would approximate
those for hypothesized recognition output. Durations of voiced
regions were obtained independent of alignment information,
using the Entropic Systems Waves/ESPS probability-of-voicing
measure. FO values were extracted using the Waves pitch tracker.
FO was measured from the speech preceding the boundary and
from the speech following the boundary; the difference in FO
across the boundary, as well as the FO derivative before the
boundary were also computed. Distance features used pauses
in alignments as landmarks, and computed the distance from the
landmark to the boundary. SNR features were intended to capture
energy of the speaker (rather than the background). Using SRI’s
telephone-bandwidth front end, each waveform was searched to
find the noise floor, and the instantaneous SNR was computed
at each time and frequency region. Various normalization meth-
ods were also used. Duration, FO, and SNR features were used
both in “raw” form and “globally” normalized (using informa-
tion from an entire conversation side). Certain FO features were
also normalized “locally” (using information available within 70
frames of the boundary).

2.2. Decision Trees and Language Models

For our prosodic model, we chose decision trees because they
can be inspected to determine the role of features and feature
combinations in classification. We used CART-style decision
trees [2], a widely used data modeling algorithm convenient for
replication of results. The decision trees (DTs) take a collection
of acoustic features X as input and predict disfluency events D
by asking questions of the features. The DT outputs posterior
probability estimates P(D|X).

In one case, we also compared the DT with a classifier based
on a statistical language model (LM). The LM yields a joint
probability P(W, D), where W is the word sequence and D are
the disfluency events. From this we can obtain another posterior
probability estimate P(D|W) = P(D,W)/P(W). The LM
used was a disfluency N-gram model of the type used in [12],
and was trained on 1.4 million words of Switchboard transcripts,
hand-annotated for disfluencies by LDC [6].

Finally, we want to combine the DT classifier based on acoustic
information with the LM classifier based on word information
for a combined estimate. This can be done as follows:

P(D|X)P(W|D,X)
P(W|X)
P(D|X)P(W|D)
P(W|X)
P(D|X)P(D|W)P(W)
P(W|X)P(D)
P(D|X)P(DIW)
£(D)

P(D|W, X)
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I'We note that we were unable to include data for boundaries adjacent
to a word fragment (a word cut off by the speaker before completion)
because fragments, which are not in the lexicon, had been removed
from the acoustically-segmented data in preparation for acoustic training.
Therefore, results apply only to disfluencies in which no word fragments
were involved. (Based on hand-labeled data for a subset of Switchboard
[10), we estimate this set to comprise about 80% of all disfluencies).

Approximation (1) holds if words and acoustic features are cho-
sen to be largely independent of one another, given D, i.e.,
P(W|D,X) = P(W|D). This condition was met in our case
since none of the features we included in the trees depended on
word or phone identity. The proportionality in (2) is obtained by
dropping all terms that are independent of D, i.e., those which
can be ignored when comparing the posteriors for different values
of D.

As explained below, we also downsampled all of our training
and test data sets to equate the prior probabilities for different
values of D. This allows us to drop P(D) from Equation (2).
Furthermore, because both DT and LM are approximations we
insert a language model weight A to empirically balance the
dynamic ranges of the two models:

P(D|W, X) « P(D|X)P(D|W)*

This weight serves a function similar to that of the LM weight
used in combining acoustic and language models for automatic
speech recognition.

3. RESULTS AND DISCUSSION

Independent experiments were run for each of the four disfluency
types (filled pauses, repetitions, repairs, and false starts). In each
case, we used a CART-style tree with binary classes; the task
for the tree was to classify each inter-word boundary as either
“disfluent” or as “other” (fluent, or other type of disfluency).
Performance metrics included

e accuracy: correct classifications / all datapoints
o recall: disfluencies detected / disfluencies
o false alarm rate: others called disfluencies / others

Prior class probabilities and therefore, chance performance vary
widely for the different classification tasks. To enable compa-
rable analyses across disfluency types and test sets we decided
to downsample the data to assure an equal number of cases in
each class; therefore chance performance on all three metrics was
50% in all experiments. Downsampling also yields more infor-
matjve trees as the DT algorithm otherwise tends to devote very
few resources to classes with low prior probabilities (assigning
differential costs to classification errors would be another way to
prevent this).

The accuracy measure summarizes both the false positive and
the false negative errors, giving them equal weight. Since we
have no reason to assign different costs to these errors in the
present work, accuracy is a reasonable overall error statistic for
comparison purposes.

3.1. Detection of filled pauses

The goal of the decision tree in this experiment was to discrim-
inate boundaries following a filled pause (“uh” or “um”) from
all other boundaries. In the case of filled pauses, unlike other
disfluencies, successfuldetection of the disfluency event is equiv-
alent to correct recognition of “uh” and “um”, both of which can
be modeled as words. Table 1 shows results for filled pause
detection using the prosody-only tree model. For comparison
purposes, results using the SRI recognizer are also provided, this
rate reflects recognizer performance after comparable downsam-
pling (which effectively increases the recognition rate relative to
that for the full set of data).

Table 1. Classification Rate for Filled Pauses (%)

Leaves | Accuracy | Recall | False Al
Tree 47 89.7 92.3 12.9
Recognizer 77.8 56.7 1.1

As shown by the accuracy measure, the prosody-only model is
superior to the recognizer at discriminating filled pauses from



other words. It should be noted, however, that the prosody-only
result is not strictly comparable with the recognition result, since
the former is optimistic because of the knowledge of correct word
boundaries. For the practical reasons noted earlier, we have not
run the appropriate “fair” test, which would involve creating a
database with one feature vector per hypothesized word boundary.

Nevertheless, we find the present results promising. We pre-
dict that even with word boundaries from recognition output, the
DT model will work well because (1) most filled pauses (FPs)
are followed by silent pauses, and recognition for silence is typ-
ically quite good, (2) our features do not rely on word or phone
identity, as explained earlier, and (3) there is already some noise
in the location of word boundaries in the forced alignment pro-
cedure used. The tree revealed that the primary features involved
were duration, distance from pause, and FO features. The leaf
count is large compared to the number of features used, and the
features were queried in complex sequences, suggesting that dif-
ferent speakers use these features differently in producing filled
pauses. Assuming equal costs for false alarms and false rejec-
tions, the prosodic model has better recall than the recognizer,
and the recognizer has a lower false alarm rate. Thus, a fu-
ture goal is to improve recognition performance by integrating
the prosodic model with standard acoustic models and with a
filled-pause language model.

3.2. Detection of repetitions

Like filled pauses, repetitions should be (largely) detectable from
a correct word transcription. However, given unreliable recog-
nition, prosody could provide a helpful knowledge source for
repetition detection if results for the prosody-only model are bet-
ter than chance. Table 2 shows results for repetition detection.

Table 2. Classification Rate for Repetitions (%)

Leaves | Accuracy | Recall | False Al
Tree 31 77.5 83.5 28.5

As indicated, the accuracy of the tree model is significantly above
chance. Performance is lower for repetitions than for filled pauses
(see Table 1); this may occur because repetitions comprise a
greater range of possible words than do filled pauses. The main
features used were duration, distance from pause, and FO. The
leaf count for repetitions was lower than that for filled pauses,
suggesting that speakers may be more similar to each other in
their prosodic production of repetitions than in their prosodic
productions of filled pauses. Future work will aim to integrate
prosody with acoustic and language models, to reduce the rate of
false alarms.

3.3. Detection of repairs

Compared with filled pauses and repetitions, repairs are more
difficult to detect based on words alone, and therefore prosody
could play an important role if performance is better than chance.
Table 3 shows results for the tree model in repair detection.

Table 3. Classification Rate for Repairs (%)

Leaves | Accuracy | Recall | False AL
Tree 11 75.5 77.0 259

Again, the tree model is able to classify the data at better
than chance. In addition, the repair-detection tree has a low leaf
count, suggesting that repairs are cued by similar features (in this
case duration and distance from pause). In future work we plan
to compare these rates to rates using a language model alone,
and to attempt to reduce false alarms by combining prosodic and
language models.

3.4. Detection of false starts

False starts are the most difficult type of disfluency to detect
using lexical information, since there is no relationship between

the abandoned and the following material. In addition, false
starts occur at high rates in natural discourse. Thus, it would be
helpful if prosody could provide a cue to their detection. Table 4
shows results for our false-start detection task using the prosody-
only model, as well as results using a false-start language model
(based on reference transcriptions), and results after combining
the two models using an optimal language model weight. Fig-
ure 1 contains ROC plots showing the tradeoff between recall
and false alarm rate for all three classfiers.

Table 4. Classification Rate for False Starts (%)

Leaves | Accuracy | Recall | False Al
Tree 4 74.0 74.0 26.0
False-start LM 60.7 23.7 2.3
Combined 77.9 72.8 17.1

The tree model, as shown, outperforms the language model in
classification accuracy. The superiority of the prosodic model
is actually underrepresented here, since the language model
is likely to be less helpful given actual recognition output,
whereas the prosodic model would remain unchanged. In ad-
dition, the prosodic model for false starts is extremely parsimo-
nious; it contains only four leaves (all using normalized duration
information)—a striking result given the large number of differ-
ent speakers represented.

The language model, however, is nevertheless helpful for re-
ducing the high false alarm rate associated with the prosodic
model. Comparison of results for the combined DT/LM model
to those for the DT alone reveals that for a given recall rate, the
combined model achieves substantially fewer false alarms than
the DT model, thereby improving the accuracy overall. This
behavior is shown in Figure 1: the combined classifer performs
as well or better than either the prosodic or the LM classifier
alone over the entire operating range. Based on these results, we
expect similar improvements from combining prosodic and LM
classifiers for the other three disfluency types.

3.5. Feature types used

To obtain a general summary of the relative contribution of dif-
ferent types of features in our trees, we examined feature usage
across the four disfluency detection tasks. To compare results
across tasks, we looked at a measure of “relative feature usage.”
We counted the number of times the decision tree asked a ques-
tion of a given feature, over all test samples, divided by the total
number of questions asked. Note that relative feature usage is a
crude way to assess the importance of a feature for a task. (A
better way to gauge feature importance would be to remove a fea-
ture from the model and retrain the decision tree, for each feature
in tumn. This approach, however, is much more time consuming
than could be justified for the present work.)

Features were grouped by type into five classes (duration,
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Figure 1. ROC plots for the prosodic DT, LM, and combined
DT+LM classifiers.
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distance from pause, FO, SNR, and gender), collapsing over
extraction region and over normalization method. Results are
shown in Figure 2. As shown, the main features used across
tasks were duration, distance from pause, and FO. Duration
comprised both the duration of the last voiced region preceding
the boundary, and the duration of the boundary itself. Both
were heavily used in the trees. Independent analyses revealed
that overall classification results improved when durations were
globally normalized (using the mean and variance from all tokens
from a particular speaker over a conversation); this is likely to be
due in particular to the normalization of pause durations at the
boundary.

As visible in Figure 2, FO features were used for repetitions
and to a small extent for filled pauses, but not used for the other
two disfluency types. A possible explanation is that typically at
boundaries containing a pause (including pauses at grammatical
boundaries), FO differences are large and quite variable. For
hesitation phenomena, however (including repetitions and filled
pauses, but not the other two disfluency types), intonation is
“suspended” but resumed near its previous value after the pause,
because the content of the utterance is not changed by the hes-
itation. Thus, at boundaries containing a pause, FO across the
boundary is typically lower for hesitations than for fluent to-
kens. Preliminary inspection of the trees is consistent with this
hypothesis, but further work is warranted.

3.6. Feature use by extraction region

In addition we compared usage of the various features across
tasks when features were grouped not by type, but rather by the
regions from which they were extracted. Results are shown in
Figure 3. As shown, classification across tasks was based almost
exclusively on features extracted before or at the boundary. This
suggests that disfluency detection may be possible before speech
resumes. For speech applications, results suggest that endpoint-
ing could be improved by dynamically adjusting the threshold
based on information preceding a pause. If preceding informa-
tion suggests that a speaker is hesitating, the threshold could be
increased to prevent premature cutoff; conversely, it could be
decreased to speed processing if no such indication were present.

4. CONCLUSION

This work revealed that a prosody-only model performed sig-
nificantly better than chance at detecting four disfluency types.
The prosody model outperformed a state-of-the-art recognizer in
detecting filled pauses. It also outperformed a language model
in the detection of false starts, given the correct transcription.
Combining the prosody model with a specialized language model
improved accuracy over either model alone for the detection of
false starts. The main features used in classification were dura-
tion, distance from a pause, and FO; in general, the relative usage
of these features was also similar for the four different disfluency
types. Classification was based almost exclusively on features
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Figure 3. Feature Extraction Regions Used by Task

extracted before or at the boundary, suggesting that on-the-fly
disfluency detection could be used to improve endpointing. Re-
sults suggest that prosody is a valuable knowledge source for the
automatic detection of disfluencies in spontaneous speech.
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