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ABSTRACT

This paper deals with the problem of non-native
accents in speech recognition. Reference tests were
performed using whole-word and sub-word models
trained either with a native accent or a pool of native
and non-native accents. The results seem to indi-
cate that the use of phonetic transcriptions for each
specific accent may improve recognition scores with
sub-word models. A data-driven process is used to
derive transcription lattices. The recognition scores
thus obtained were encouraging.

1. INTRODUCTION

Our main concern in this study is to reduce the nega-
tive effects caused by non-native accents in automatic
speech recognition. These effects account for a signif-
icant drop of word recognition scores when using a
recogniser trained with material spoken with a na-
tive accent. Collecting large enough corpora for each
non-native accent is generally not feasible. However,
this problem turns out to be more complex, since even
a recogniser trained with speech material from a spe-
cific non-native accent, still achieves relatively low
recognition scores for speakers with that same accent,
given the larger range of pronunciations among non-
native speakers.

Our first recognition experiments with non-native
speakers of English and whole-word models indicated
a drop of approximately 15% when using a recogniser
trained for native speakers [6]. At the same time,
Brousseau & Fox [1] indicated similar results for dif-
ferent dialects of English as well as French.

In our recent research [3], we have tried to evalu-
ate the discriminative capabilities of HMM models in
terms of accent identification, an area which has also
been the concern of other researchers recently [2]. A
topology of parallel competing sub-nets was adopted,
in which each sub-net consisted of an ergodic net of
the full set of HMM phone models trained with the
corresponding accent. The sub-net which achieves the
higher likelihood was then selected. This accent iden-
tification approach was integrated in a three-stage
speech recognition system, in which the first stage
decided about the speaker gender, the second stage
classified the speaker accent, and the final stage used
the recogniser models corresponding to the decisions
made in the previous stages. The results, however,
have shown that it is still preferable to train a recog-
niser with a pool of accents.

The spoken corpus used in our research work was
collected in the scope of the SUNSTAR European

project [6]. The corpus originally comprised five ac-
cents of English (Danish (da), German (de), British
(en), Spanish (es), and Italian (:t), to which Por-
tuguese (pt) was later added. There are 20 speakers
(approx. 10 male and 10 female) for each accent, each
one repeating two times a vocabulary of 200 English
isolated words. The experiments described in this pa-
per used only the male sub-set of this corpus. This
sub-set was split Into training and testing sub-sets of
speakers (60% and 40%, respectively).

Section 2 presents results obtained with whole-
word models, which should serve as an upper-bound
measure for the remaining vocabulary independent
experiments, described in sections 3 and 4. The sub-
word models experiments described in section 3 con-
strain the sub-word models with a single phonetic
transcription, derived from a pronunciation dictio-
nary. This restriction does not take into account the
multiple ways in which a word can be pronounced
by a non-native speaker, depending on his reading
competence and the differences between his native
phoneme inventory and the foreign one. This fact
motivated the use of transcription lattices for which
a data-driven method will be described in section 4.

2. WHOLE-WORD EXPERIMENTS

In the experiments described in this section, only
25% of the vocabulary available was used for test-
ing. The remaining vocabulary was reserved for the
experiments in the following sections, for training vo-
cabulary independent sub-word models. The speech
signal was pre-processed to introduce pre-emphasis
and a Hamming window of 30ms was shifted every
10ms in order to perform an LPC analysis of order
12. Eight liftered cepstra and the corresponding delta
cepstra coefficients were then computed. The word
models followed a 10-state CHMM linear topology.
Recognition was done using Viterbi decoding.

The first set of recognition experiments used whole-
word models trained exclusively with English native
speakers. The results are summarised in figure la.
In this figure (and in the following similar ones) the
leftmost points correspond to the recognition scores
obtained using the initial models which were built by
linear segmentation, followed by a Viterbi alignment.
These initial models were afterwards reestimated un-
til convergence was obtained for a maximum of 10
reestimation cycles. The second column of points
refers to the models obtained after 4 cycles of em-
bedded reestimation. The two sets of models we have
Just described had a single Gaussian observation dis-
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Figure 1. Percentage recognition scores using whole-
word models with different number of observation mix-
tures, trained with: (a) British speakers; (b) speakers
from each specific accent; (c) all the speakers from the
training corpus sub-set.

tribution. The remaining scores in the figure refer to
models with multiple mixtures, which were obtained
by iterative splitting, in a process similar to the one
reported in [7], with the HTK package, on which most
of the system was developed. The line labeled totalre-
ports the average score obtained overall accents. The
best non-native score in figure 1a was obtained by the
Danish speakers. Worst results were obtained with
Italian and German accents. The vocabulary chosen
for testing seems to include particularly hard words
for these speakers, since the bad scores were obtained
for specific words and not for specific speakers.

The second set of experiments concerned models
trained and tested separately with speakers with the
same accent (figure 1b). As expected, these spe-
cific recognisers provided far better recognition scores
when compared with figure la (except, obviously, for
the British accent).

Non-native speech recognition can be viewed as a
speaker independent recognition problem, for which
the traditional approach has been pooling all the
speech data from as many speakers as possible as
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Figure 2. Percentage recognition scores using sub-word
models with different number of observation mixtures,
trained with: (a) British speakers; (b) speakers from
each specific accent; (c) all the speakers from the train-
ing corpus sub-set.

if it would belong to a single speaker. The recog-
nition scores obtained using this approach are plot-
ted in figure lc, which presents the best results for
all non-native accents. The British speakers are still
holding the best score but the average distance to the
non-native speakers is now less than 9%.

3. SUB-WORD EXPERIMENTS

The experiments performed with whole-word models
were repeated as a vocabulary independent task using
sub-word models (figure 2). Most of the parameters
from the whole-word recogniser were used, except the
number of states which was set to 3. The pronunci-
ation lexicon distributed with the TIMIT database
was adopted, with slight modifications. We have se-
lected 46 different phones which are fully represented
in our training vocabulary.

The most noticeable differences between the results
shown in figures la and 2a are twofolded. First,
the difference between native and non-native scores
reduces slightly. On one hand the native scores de-
crease, which was expected. On the other hand, some
non-native sub-sets were able to increase their scores.



The second difference relates to the advantages of us-
ing multiple mixtures which become noticeable when
using sub-word modeling. This can be explained by
the increase of the number of speech units available
for training some of the sub-word models.

In the experiments reported in figure 2b, phone
models were trained with each national group of
speakers. As it was noticed for the whole-word recog-
nisers, the use of specialised recognisers indicates a
clear performance improvement over training with na-
tive speech. Again, none of this recognisers achieve
the performance of the one tested with British speak-
ers. However this difference became now as small
as 3.4% for Portuguese speakers. We expected some
performance degradation when changing from whole-
word models to sub-word models, given the size of
the vocabulary and the dimension of the training set.
This degradation was found for British speakers, but
was not so evident for non-native ones. In the case
of the results obtained with German speakers, this
evolution was even inverted.

The experiments presented in figure 2c concern
models trained with a pool of all the training accents
material. As expected, we obtained better results
than when using only native speakers in the training
set (figure 2a). However the improvements were not
so marked as with whole-word models. Concerning
the number of observation components, it becomes
evident that the larger amount of training material
made possible to train more components for an i1m-
proved performance.

4. TRANSCRIPTION LATTICES
In the experiments reported above the same phone-

mic transcriptions were used for every accent. The
use of a more flexible and accurate set of transcrip-
tions is still dependent on the availability of human
resources for manual labelling. Typical acoustic-
phonetic decoders are based in ergodic topologies
where all the sub-word models are represented. The
transitions between these models are not retrained
and the results are generally very poor with a high
variability from utterance to utterance. These prob-
lems became clear very early for the researchers in
continuous speech recognition [4]. Nowadays, there
are a few methods that automatically derive the pho-
netic transcription in speech recognition tasks where
many new words are expected {5]. Our goal here,
is not the derivation of a single transcription but of
a probabilistic model for the possible transcriptions,
directly from a set of word repetitions.

4.1. Model definition
The automatic method we have used for deriving the

probabilistic transcription lattices for a given word
assumes the following input data:

e A number N, (46) of models of the sub-word
units A®) = (A® BO) ),

e A number of speech signal repetitions from the

word to be transcribed. This number should be

as high as possible, so that every alternative path
through the transcription lattice may represent
a significant number of occurrences.

e The maximum number N; of sub-word units for
each word. We are currently working on alter-
natives that eliminate the need to specify this
parameter. Pragmatical solutions can be easily
derived based on the average duration of all the
word repetitions or on the number of symbols of a
standard orthographic transcription, but we also
expect to derive formal solutions to this problem.

The method starts by the creation of an ordered
series R, (n = 1, ..., Ny) of sets of sub-word models.
Transitions between all models from set R, to set
Ry, 41 are allowed. In addition, there are initial and
final non-emitting states which will be inserted in the
previous series as Ry and Ry, 4i. Thus, an HMM
model Aip = (A¢p, Bip, Ilip), is obtained, which will
be referred to as the transcription model. Each sub-
word model in this transcription model has a defined
temporal place to be selected, whereas in an ergodic
network the sub-word models may occur at any time.

In our preliminary experiments with the transcrip-
tion model, we do not intend to change the sub-word
models themselves, which means that they are not
reestimated. Since these models are repeated Nj
times along the transcription model, they can be pro-
cessed as fixed tied models. Thus, the only parame-
ters affected by this contextual tagging are the tran-
sition probabilities between sub-word models. Hence,
the transition matrix of the transcription model A,
can be organised as a simpler matrix I', which we
will call the inter-phone transition matrix. The sub-
word models will be referred to as the macro-states
of this matrix. The transitions are reestimated us-
ing the Baum-Welsh algorithm which maximises the
global likelihood given the signal repetitions from the
word to be transcribed.

Phone deletions and insertions are not allowed in
the above description. However, the occurrence of
these phenomena is one of the aspects which may be
important for non-native speech recognition. In or-
der to overcome this problem, transitions are allowed
from every element of R, to any element of R,,, pro-
vided that m > n. The transition probabilities are
assumed to decrease with the topological/temporal
distance |m — n|. These restrictions are imposed in
the transition matrix of the initial model. By doing
this, we expect to shape the reestimated models in a
suitable form for deriving transcription lattices.

In order to create the matrix Ay, of the initial tran-
scription model, we first build the matrix T' accord-
ing to the restrictions mentioned above, into which
the transition matrixes A; from each sub-word model
are then inserted. The initial matrix I' could also
incorporate information such as provided from a pro-
nunciation dictionary. However, this alternative was
not yet explored.



After the reestimation process, there will be a new
transition matrix A¢p. In order to simplify our repre-
sentation for further processing, we must recover the
corresponding matrix I'.

4.2, Macro-states pruning

The inter-phone transition matrix I' has a huge di-
mensionality which is not useful for deriving a tran-
scription lattice, since it can not be manually checked
neither used efficiently for recognition purposes. Most
of the related macro-states are never (or only oc-
casionally) visited during the reestimation process,
which means they can be eliminated. Hence, a prun-
ing process can reduce many of the Ny * N, macro-
states. This pruning takes into account the state oc-
cupation counters at the end of the reestimation pro-
cess. For each state, we sum the values in the corre-
sponding counters obtained from all the repetitions.

In order to obtain an occupation measure for each
macro-state, the counters from each state of the cor-
responding sub-word model are also summed (three
in our case). This value 1s normalised by the num-
ber of repetitions available for training the word to
be transcribed. Using this value, a threshold is tuned
empirically, bellow which most of the macro-states
are eliminated.

4.3. Results

The first transcription lattices obtained were esti-
mated using only the speech material collected from
the British speakers also used for training in previous
experiments. If the pruning threshold is low enough,
the best path can the found by visual inspection.
Most of the time, the transcription thus obtained is
very close, if not equal, to the phonemic transcription
found in the pronunciation dictionary. The recog-
nition results obtained with these lattices are sum-
marised in table la, and can be compared with the
best results of figures la and 2a, using whole-word
and sub-word models. A slight increase of the overall
performance was observed. For German speakers, the
recognition score almost doubled.

In a second set of experiments, the British sub-
word models were again used, with a I' matrix trained
with the each accent group of training speakers and
tested with the corresponding test group. Comparing
the results in table 1b with the scores previously ob-
tained, improvements of nearly 20% in the recognition
score can be found. If also the sub-word models are
trained with specific accent material, the performance
increases again (table 1c¢). However, the superiority
of the transcription lattices is not so evident now.

5. CONCLUSIONS
Some of the conclusions from our previous work

seemed to indicate the importance of having more
detailed pronunciation transcriptions for each of the
non-native accents present in our speech corpus. In
order to derive a probabilistic transcription for each
word, we have developed an approach where a finite-
state-machine is initialised for each word. The cor-

mix | da de en es 1t pt | tot
(a) 3169.7 40.8 95.3 57.5 41.6 62.8]59.0
(a)665.0 274 9256 50.8 42.3 65.0]54.8
(b) 3176.3 58.6 95.3 79.5 63.0 78.0(74.1
(b) 6|74.1 575 925 77.8 63.3 80.5|73.3
(c)3(83.1 61.4 95.3 825 70.5 87.9(79.1
(c) 6|88.0 72.6 925 84.9 78.1 90.9|83.2

Table 1. Percentage recognition scores using 3 and 6
observation mixtures. Training material: (a) British ac-
cent for sub-word models and transcription lattices; (b)
British accent for sub-word models and specific accents
for transcription lattices; (c) Specific accents for sub-
word models and transcription lattices;

responding states represent the sub-words and ev-
ery possible sequence of sub-words is allowed. We
have used a Baum-Welsh reestimation procedure in
order to allow all utterances of the same word to con-
tribute to the computation of state transitions. After
this reestimation process, a pruning procedure elimi-
nates the states with lower occupancy. The remaining
full paths, together with their transition probabilities,
thus provide relevant statistical information for build-

ing a transcription lattice. The most significant im-

provements were obtained when it was assumed that

only native speech material was available for the sub-
models training.

In the future, we plan to use these transcription
lattices in our accent identification system. We will
also investigate their potential for deriving improved
phone-models and thus providing another dimension
of recursive training for sub-word models and tran-
scriptions.
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