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ABSTRACT

In this paper, the acoustic and linguistic charac-
teristics of children speech are investigated in the
context of automatic speech recognition. Acoustic
variability is identified as a major hurdle in build-
ing high performance ASR applications for chil-
dren. A simple speaker normalization algorithm
combining frequency warping and spectral shap-
ing introduced in [5] is shown to reduce acous-
tic variability and significantly improve recogni-
tion performance for children speakers (by 25—
45%). Age-dependent acoustic modeling further
reduces word error rate by 10%. Piece-wise linear
and phoneme-dependent frequency warping algo-
rithms are proposed for reducing acoustic mis-
match between the children and adult acoustic
spaces.

1. INTRODUCTION

Automatic speech recognition (ASR) for children speak-
ers is a challenging problem with many potential appli-
cations. Although a significant amount of literature ex-
ists on comparative analysis of the acoustic and linguistic
characteristics of children with those of adults [2, 4], our
understanding of how such differences affect speech recog-
nition performance is limited. In this paper, we present
new results of ongoing efforts to improve the performance
of speech recognition for children speakers [6].

The acoustic and linguistic characteristics of children’s
speech change rapidly as a function of age and are widely
different from those of adults. These differences are at-
tributed mainly to anatomical and morphological differ-
ences in the vocal-tract geometry, less precise control of
the articulators and a less refined ability to control supra-
segmental features such as prosody. Important differences
in the spectral characteristics of children voices when com-
pared to those of adults include higher fundamental and
formant frequencies, and greater spectral variability. [2,
4]. On average, the speaking rate of children is slower
than that of adults. Further, children speakers display
higher variability in speaking rate, vocal effort, and de-
gree of spontaneity. A detailed report of the temporal and
spectral characteristics of children’s speech as a function
of age can be found in [4].

There are several implications that the acoustic dif-
ferences mentioned above have on speech recognition for
children. The main goal of the ASR feature extraction
stage is to decompose the speaker-dependent informa-
tion (e.g., pitch) from the phoneme-dependent informa-
tion (e.g., formants) and retain the latter. This task is
more difficult for children voices because the fundamental
frequency and the formant bandwidths are of compara-
ble magnitude. Moreover, for telephone speech, a large
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spectral slice containing the high-frequency formants is
lost due to band-limiting. Thus, the sparse sampling of
the spectrum (due to high FO values) and relatively few
formants in the given bandwidth (due to high formant val-
ues) in children’s speech pose fundamental limitations on
the amount of phoneme-dependent information available

at the ASR front-end.

A major hurdle in acoustic modeling of children speak-
ers is spectral and temporal variability in children speech.
Increased variability in formant values results in greater
overlap among phonemic classes for children than for adult
speakers, and makes the classification problem inherently
more difficult. Further, the range of values for most acous-
tic parameters is much larger for children than for adults.
For example, five-year old children have formant values
up to 50% higher than male adults [4]. The combination
of a large acoustic parameter range and increased acous-
tic variability can seriously degrade ASR performance.
In Section 2, speaker normalization procedures and age-
dependent acoustic modeling are used to reduce variabil-
ity and increase resolution between classes.

Other important issues in ASR for children, not tack-
led in this paper, is the spontaneity and greater linguistic
variability of children’s speech (that creates large amounts
of extraneous speech) and associated ASR interface issues.
In general, the modality of child-machine interaction us-
ing spontaneous speech is surprisingly different than that
of adults and needs to be studied in detail.

As discussed above the large range of values and the
increased variability of acoustic and temporal features in
children speakers pose a challenging problem for ASR.
There are certain other characteristics of children speech,
however, that could be potentially advantageous for ASR.
In [4], young children are shown to be less skilled in co-
articulation, and display longer durations especially across
word boundaries. This signifies that simpler (context-
independent) acoustic models can be used for certain ASR
tasks. Further, children tend to exaggerate newly ac-
quired or recently mastered skills. This “overshooting”
tendency is clear in the measurements of spectral and
temporal parameters in [4]. For example, five-year old
children show a tendency to over-elongate certain vowels
(/iy/, /aa/, /ae/, Juw/) to differentiate them from their
confusable “short” counterparts ( /ih/, /ah/, /eh/, /uh/).
Such spectral or temporal patterns could potentially im-
prove ASR performance provided that the classifier and
feature extraction system are able to efficiently incorpo-
rate such cues.

Overall, current ASR systems are unable to cope with
the increased degree of variability and spontaneity in chil-
dren speech, due to lack of general normalization algo-
rithms. In Section 2, we investigate how these sources
of acoustic mismatch and variability in children speech
affect speech recognition performance. A speaker nor-
malization procedure that combines spectral shaping and
frequency warping is implemented that reduces recogni-
tion error rate up to 45%. In Section 3, bi-parametric



and phoneme-dependent mappings from the children to
the adult ASR acoustic feature space are investigated.

2. ACOUSTIC MODELING

In this section, we evaluate speech recognition perfor-
mance as a function of speaker’s age. Acoustic mismatch
and variability are identified as the major contributors to
performance degradation. Speaker normalization, model
adaptation and age-dependent models are used to reduce
variability and constrain the acoustic space of children
speakers. Substantial performance gains are achieved.
Acoustic models were trained from utterances collected
over the public switched telephone network from either
adult or children speakers. A summary of the training
and testing databases is provided in Table 1. In Fig. 1(a),
word accuracy as a function of age is shown for mod-
els trained from an adult speaker population (Dgtl) la-
beled “ADLT HMM” and from a children speaker popula-
tion (Dgtll) labeled “CHLD HMM?” for a connected digit
recognition task on corpus Dgtlll. For both matched and
(especially for) mismatched training and testing condi-
tions recognition performance decreases substantially for
young children. Performance reaches adult levels approx-
imately around thirteen or fourteen years of age, which
agrees with the observation in [4] that by the age of four-
teen both the mean and standard deviation of most acous-
tic characteristics have reached adult levels. Overall, recog-
nition performance for children speakers up to four times
worse than for adults depending on the speaker’s age.
For mismatched training and testing conditions (“ADLT
HMM”) word error rate is approximately two to three

times higher than for matched conditions (“CHLD HMM?”).

We have also observed (results not shown here) that a rel-
atively small improvement is achieved by using context-
dependent (vs. context-independent) model units, which
agrees with the observation in [4] that young children
(ages 5-12) have not fully developed their co-articulation
skills.

The major reason for performance degradation for
younger speakers is acoustic mismatch between the train-
ing and testing data, increased acoustic variability and the
large range of acoustic parameters (as discussed in Sec-
tion 1). Next, we attempt to improve recognition perfor-
mance by attacking each one of these problems. Speaker
normalization and model adaptation is used to reduce the
mismatch and variability, and age-dependent models are
used to constrain the acoustic space under consideration.

2.1. Speaker Normalization and Adaptation

In [5], a parametric linear transformation of the HMM
models and a parametric frequency warping of the input
utterance were combined under a single statistical frame-
work. Next, we outline the joint normalization and adap-
tation procedure, and propose an extension for a family of
HMMs. The goal is to improve recognition performance

Name Speaker Content No. of No. of
Population speakers  strings
Dgtl Adults digits 3026 4781
DgtlIl 10-17 yrs. digits 1234 5767
Subwl Adults phrases 242 12144
Subwll 10-17 yrs. phrases 1234 14267
DgtlIl 6-17 yrs. digits 501 2656
Comml 6-17 yrs. commands 501 3554
CommlI 10-17 yrs. commands 1234 7436

Table 1: Training and testing databases.

by improving the match between HMMs and test utter-
ances, and by reducing acoustic variability of the HMMs.

The frequency warping approach to speaker normal-
ization compensates mostly for inter-speaker vocal tract
length variability by linear warping of the frequency axis
by a factor a [3]. Frequency warping is implemented in
the mel-frequency filterbank front-end by linear scaling of
the spacing and bandwidth of the filters. For each ut-
terance, the optimal warping factor & is selected from a
discrete ensemble of possible values so that the likelihood
of the warped utterance is maximized with respect to a
given HMM and a given transcription. Let X ¢ denote
the sequence of cepstrum observation vectors warped by
a linear frequency warping function. If A denotes the pa-
rameters of the HMM model, then the optimal warping
factor 1s defined as

& = argmax P(X %|a, A\, H) (1)

where H is a decoded string obtained from an initial
recognition pass. The selected observation vector sequence
X% is decoded in a second recognition pass to obtain the
recognized string.

There is a large class of maximum likelihood based
model adaptation procedures that can be described as
parametric transformations of the HMM model or the ob-
servation sequence. For these procedures, we let A, =
h+(X) denote the model obtained by a parametric linear
transformation h-(). The optimal parameters of the lin-
ear transformation 4 and the frequency warping & can be
simultaneously estimated. Further, if A\, n =1,..,N is a
family of acoustic models the maximum likelihood crite-
rion can be used to select the appropriate model and also
optimize the parameters of the speaker normalization and
model adaptation algorithms as follows

{&,%, 7} =arg max P(X%|a,v, A}, H). (2)

@,,n

The potential of this class of procedures was inves-
tigated in the context of speaker adaptation from single
utterances. In our case, h-() is a simple linear bias applied
to the means of the model distributions or the observation
sequence [5], and A", n = 1,.., N is a family of age-group
dependent acoustic models.

2.2. Experimental Results

Next, speaker normalization and age-dependent acoustic
modeling techniques are applied to the connected digits,
and command and control recognition tasks.

Digit Recognition Task:

Acoustic models were trained from corpus Dgtl (labeled
“ADLT HMM?”) and DgtlIl (“CHLD HMM?”) in Table 1.
A mixture of 6 Gaussians were used to model each state
of the context-dependent digit units. In Fig. 1(a), the
digit accuracy is shown for the test corpus Dgtlll before
and after speaker normalization. Results for the HMMs
trained from adult and children speaker populations are
shown. The allowed range of formant frequency scaling
was from —20% to +12% and a total of 17 warping fac-
tors were examined during frequency warping. The er-
ror rate reduction due to speaker normalization is shown
to be up to 50%, and is greater for young speakers un-
der twelve years of age and for the mismatched “ADLT
HMM” trained from adult speakers (dotted vs. dashed
line). After speaker normalization the recognition accu-
racy for children speakers over 9 years of age is comparable
to that of adults. The summary of the cumulative results



Model Baseline | Norm. || Improv.
Adult HMM 15.9% 8.7% +45%
Children HMM 6.7% 4.9% +25%
Cld+Adlt HMM 7.6% 5.6% +25%

Table 2: Digit error rate for children speakers before and
after speaker normalization.

for all ages is given in Table 2. In addition, the perfor-
mance of an HMM trained from data (equally) mixed from
the adult and children corpora Dgtl and Dgtll is shown
(labeled “Cld+Adlt HMM?”). Overall, digit error rate re-
duction by 25-45% was achieved when using the speaker
normalization procedure despite the fact that on the av-
erage only 3.5 digits were used to estimate the parameters
of the frequency warping and the linear transformation.
Age-dependent models were trained from corpus Dgtll
from two speaker groups: ages 10-12 and 13-17. The
maximum likelihood criterion (Eq. (2)) was used to se-
lect between the two models. After speaker normaliza-
tion an additional 10% reduction in word error rate was
achieved using age-dependent models. Further improve-
ment in recognition performance might be possible by im-
posing additional constraints on the ASR acoustic space.

Command Phrase Recognition Task:

HMMs were trained from the corpus Subwl (“ADLT”)
and Subwll (“CHLD”) in Table 1. A mixture of 16 Gaus-
sians were used to model each state of the the 40 context-
independent (subword) English phone units. In Fig. 1(b),
(c), word recognition accuracy is shown as a function of
age for test data from the Comml and CommlI corpora.
Comml and CommlI consist of 10 possible phrases (16
words) and 50 phrases (68 words), respectively. Recogni-
tion was performed using a finite state grammar compris-
ing the relevant phrases for each database. The baseline
recognition performance for the “ADLT HMM” (dotted
line) decreases rapidly for speakers younger than twelve
due to the increasing acoustic mismatch between the train-
ing and testing speaker populations. Similarly, recogni-
tion performance for the “CHLD HMM” (dashed-dotted
line) trails off for speaker ages 6-8 due to acoustic mis-
match (no children younger than ten in training corpus
Subwll) and increased acoustic variability for the 6-8 age
group. Similarly to the digit recognition task, speaker
normalization helps significantly to bridge the gap in per-
formance between the models trained from adult and from
children speaker populations. However, adult recognition
accuracy levels are still not reached for the younger age
group (6-9 years), suggesting that normalization strate-
gies more sophisticated than simple linear frequency warp-
ing may be needed.

3. ISSUES IN SPEAKER NORMALIZATION

In the previous section, a simple linear frequency warping
function was used to map from the children into the adult
acoustic space. As discussed in [4], the assumption that all
formants scale linearly with the vocal tract length is cor-
rect only to the first order. In reality, the average formant
frequencies (F1, F2, F3) get scaled by different amounts,
especially for female speakers. Further, the amount of
formant scaling between children and adult speakers is
phoneme-dependent. Next, bi-parametric and phoneme-
dependent frequency warping functions are investigated
for speaker normalization.
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Figure 1: Word accuracy (%) vs. speaker’s age using
HMMs trained from children or adult speakers before and
after the speaker normalization algorithm is applied. Test

databases: (a) DgtIIl, (b) Comml, and (c¢) CommII.

3.1. Bi-parametric Frequency Warping

To account for different scaling factors for F1, F2 and
F3 a simple bi-parametric frequency warping algorithm is
proposed. The two warping function parameters are the
low frequency « and high frequency a g scaling factors.
The warped frequency f,, is computed as

fu = (U= f/fmax) ar + (f/ fmax) an] f (3)

where fmax is the speech signal bandwidth.

The values of ar and ay are determined by exhaus-
tively searching over a grid of possible scale factor val-
ues so that the likelihood (see Eq. (2)) is maximized. A
single utterance is used to estimate the scaling factors.
The speaker normalization function was tested on the
DgtIII corpus (Fig. 1(a)) using a set of 40 possible (ap,



ozH) combinations, ranging from —-20% to +12% under
the beam constraint |az — ag| < 0.06. An additional
3-5% reduction in error rate (mostly for female speak-
ers) was achieved when using the bi-parametric vs. linear
frequency warping function. The average low and high
frequency scaling factors computed from the speaker nor-
malization algorithm display similar trends to the formant
scaling factors for F1 and F2, F3 computed in [4]. On
the average |ar — 1| > |ag — 1], i.e., the low frequency
band (corresponding roughly to F1) gets expanded or
compressed more that the high frequency band (F2, F3),
especially for female speakers.

3.2. Phoneme-dependent Frequency Warping

In this section, we investigate the need for a speaker nor-
malization procedure that uses phoneme-dependent scal-
ing factors. Further, the effectiveness of the speaker nor-
malization algorithm is evaluated for each phoneme by
comparing the spectral distances between the children ut-
terances and the adult target ones before and after fre-
quency warping is performed.

In Fig. 2(a), the optimal scaling factors (correspond-
ing to the minimum Fuclidean cepstrum distance between
the normalized children utterances and the adult target
ones) for male children of various age groups relative to
adult male speakers are shown for monophthongal vow-
els, diphthongs, nasals, glides and fricatives. The scaling
factors are computed for the average spectral envelope of
all instances of the specified phoneme between speakers in
the age groups 5-8, 9-12 and 13-16 years and adult male
speakers. The C.1.D. high-quality microphone children
database was used for that purpose (for details see [4]).
The inter-phonemic scale factor variability for each of the
age groups is relatively small and is greatest for the 5-8
age group. Scaling factors typically are more phoneme-
dependent for diphthongs, glides and nasals than for vow-
els. For fricatives and nasals there is less age-dependent
spectral change than for the rest of the phonemic classes.
Note, that for all phonemes the scaling factors show simi-
lar trends as a function of age and thus using a phoneme-
independent scaling factor is a valid approximation.

In Fig. 2(b) the average Euclidean cepstrum distance
(similar to the log likelihood used for ASR) between male
children ages 5-8 and adults, before and after frequency
warping is computed for each phoneme. The simple linear
frequency warping (by the amount in Fig. 2(a)) is shown
to be very efficient in reducing acoustic mismatch between
the young children and adult speakers for most phonemic
classes.

4. CONCLUSIONS

Children speech 1s quite different from adult speech both
in terms of absolute values and variability of acoustic
and linguistic correlates. As a result the children acous-
tic space is large and with highly overlapping phonemic
classes. Simple speaker normalization procedures were in-
vestigated that reduce acoustic variability and mismatch
between the children and the adult acoustic spaces. The
proposed linear warping speaker normalization, spectral
shaping adaptation, and age-dependent acoustic modeling
improved recognition performance up to 55% for children
speakers, using a single utterance for adaptation. Finally,
bi-parametric and phoneme-dependent warping functions
were investigated as alternatives to linear frequency warp-
ing.
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Figure 2: (a) Optimal scaling factors for vowels, nasals,
glides and fricatives for male children ages 5-8 (o), 9-12
(x), 13-16(+) (reference male adult speakers). (b) Aver-
age Buclidean cepstrum distance between children male
speakers ages 5-8 and adult male speakers before (o) and
after (x) frequency warping.
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