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ABSTRACT

In this paper, vocal tract and orofacial motions
are measured during speech production in order to
demonstrate that vocal tract motion can be used to
estimate its orofacial counterpart. The inversion, i.e.
vocal tract behavior estimation from orofacial mo-
tion, is also possible, but to a smaller extent. The
numerical results showed that vocal tract motion ac-
counted for 96% of the total variance observed in the
joint system, whereas orofacial motion accounted for
77%. This analysis is part of a wider study where a
dynamical model is being developed to express vocal
tract and orofacial motions as a function of muscle
activity. This model, currently implemented through
multilinear second order autoregressive techniques is
described briey. Finally, the strong direct inuence
that vocal tract and facial motions have on the en-
ergy of the speech acoustics is exempli�ed.

1 INTRODUCTION

For some time now, our goal has been to model
speech production using computed mappings be-
tween observed physiological and kinematic events
associated with the vocal tract articulators. Since
these mappings were intended to assess the inherently
nonlinear neuromotor and biomechanical properties
of the vocal tract, it was initially assumed that they
should be estimated using nonlinear techniques such
as arti�cial neural networks[1]. This e�ort was quite
successful for the lips and jaw. However, estimations
of tongue motion failed in part because the tongue
muscular activity and even kinematic behavior is dif-
�cult to measure reliably, and relatedly because the
large number of muscle EMG and position channels
needed for the tongue lead to overly complex network
structures[2].
Recently, our notion of speech production has been

extended to include phonetically relevant visual cor-
relates of perioral and facial motion, hypothesizing
that motions of the lower face during speech are
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Figure 1: Scheme of audible and visible speech produc-
tion.

largely the consequence of deformations caused by
the act of con�guring the vocal tract over time[3]
(see Fig. 1). At �rst, this was examined by compar-

ing muscle EMG-based neural network estimations of
mid-sagittal lip and jaw position with network esti-
mations of lip shape and position in the face plane
based on perioral and facial muscle EMG activity[4].
The results of nonlinear estimation of the face plane
data were moderate, however better results were ob-
tained using much simpler multilinear second order
autoregressive (AR) techniques[5]. This led to appli-
cation of the same techniques to vocal tract data, par-
ticularly those associated with tongue motion. Initial
estimations of tongue motion from EMG activity re-
covered better than 80% of the variability.

More important, successful application of the same
second order estimation techniques to vocal tract and
orofacial data suggests that it may indeed be possible
to incorporate both vocal tract and orofacial behav-
ior within a model of speech motor control whose



primary function is to shape the vocal tract. In
this paper, details are given of the model and the
cross-validation techniques used to demonstrate that
muscle based estimations of vocal tract behavior can
be used to predict the 3D motion of points mea-
sured on the face, including the lips, cheeks and chin.
Also, preliminary results are given for the inverse-
forward estimation of vocal tract behavior from vis-
ible orofacial motion three-dimensionally measured
with OPTOTRAKTM [6]. Since speaker speci�c vo-
cal tract areas can be derived frommid-sagittal artic-
ulator position and MRI reference volumes and then
be used to synthesize the acoustics[7], the aim here is
to examine the extent to which the positions of the
vocal tract articulators and hence the acoustics are
recoverable from visible facial motion.

2 EXPERIMENTATION

In addition to the speech acoustics, three types of
data were collected for the analyses described in
the following sections: EMG[8] for muscular activ-
ity, magnetometer (EMMA{[9]) for midsagittal vocal
tract motion, and OPTOTRAKTM [10] for 3D orofa-
cial motion. Speech materials included multiple pro-
ductions of the sentences: When the sunlight strikes

raindrops in the air, they act like a prism and form

a rainbow; and Sam sat on top of the potato cooker

and Tommy cut up a bag of tiny potatoes and popped

the beet tips into the pot. Each of them was uttered
�ve times in each experiment by a male American
English native speaker (EVB).

EMMA
Orofacial Motion
OPTOTRAK
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Figure 2: Position of markers during EMMA (left) and
OPTOTRAK (right) measurements. Black markers are
used for temporal alignment.

2.1 Muscle Activity: EMG

Muscular activity was measured through intra-
muscular electromyography (EMG[8]). EMG

data were sampled at 2.5kHz from eight muscles
(ABD, DLI, OOI, Mentalis, DAO, OOS, LLS and
LAO/Zygomatic) during OPTOTRAKTM measure-
ments; and from nine muscles (ABD, DLI, OOI,
GGA, GGP, HG, SG, GH and MPT) during EMMA
measurements. Note that ABD (jaw), DLI and OOI
(lips) are common to both OPTOTRAKTM and
EMMA measurements. The raw data were \demodu-
lated" using an amplitude-weighted inection count-
ing procedure[8]. The frame rates were 250 frames/s
during EMMAmeasurements and 60 frames/s during
OPTOTRAKTM measurements.

2.2 Vocal Tract Motion: EMMA

An electromagnetic mid-sagittal articulometer sys-
tem (EMMA[9]) was used to track the position of
seven points located on the tongue surface (4 points),
the upper and lower lips, and the jaw (at the incisors)
as illustrated in Fig. 2. The data, acquired at 625Hz,
were downsampled to 125Hz to match the sampling
rate of the OPTOTRAKTM data described in the
next section. The speech signal was acquired simul-
taneously at 20kHz.

2.3 Orofacial Motion: OPTOTRAKTM

The 3D position of markers placed on the face was
tracked with an OPTOTRAKTM . Data were ac-
quired in two sessions. In the �rst session, posi-
tions for 11 markers were sampled at 60Hz simulta-
neously with EMG signals for the eight muscles cited
in Section 2.1 and with speech acoustics acquired at
2.5kHz. These data were used to elaborate the dy-
namical model described in Section 3.3. In the sec-
ond session, positions for 12 markers (see Fig. 2) were
sampled at 125Hz simultaneouly with the speech sig-
nal acquired at 12.5kHz. These data were combined
with the vocal tract data obtained with EMMA to
form the integrated tract-face model described in the
next section.

3 UNIFIED ANALYSIS

This section outlines the procedure used to combine
orofacial and vocal tract motions, the simple model
used to represent the dynamic relations with the neu-
romuscular activity that produces the motion, and an
example of the strong correlation between the time-
varying acoustic energy and the motions of the vocal
tract articulators and the face.

3.1 Temporal Alignment

Vocal tract and orofacial motions were not measured
simultaneously.1 Nevertheless, since the same set of
utterances as well as the same subject were used

1The current owing through the OPTOTRAKTM markers
(infrared LEDs) interferes with the electromagnetic �eld that

ows through the EMMA sensors (transducer coils).



in both vocal tract and orofacial motion measure-
ment sessions, the two sets of data could be com-
bined by removing the pauses contained in each ut-
terance and applying a temporal alignment (DTW|
Dynamic Time Warping) procedure[11]. The align-
ment was done using the markers that shared equiv-
alent information in vocal tract and orofacial mea-
surements, namely jaw, upper and lower lips which
are denoted by the black markers in Fig. 2.
One utterance of the sentence When the sun light...

from each set of measurements was set aside as for
later testing. The training set was constructed by
performing the temporal alignment (DTW) between
utterances for all possible pairs of utterances pro-
duced during vocal tract and orofacial measurements.
Only the pairs with average correlation coe�cients
above 0.85 were used in the analysis that follows.

3.2 Principal Components

Once aligned, the vocal tract and orofacial data can
be used to analyze the inuence of vocal tract motion
on orofacial motion as well as the extent to which vo-
cal tract behavior can be recovered from orofacial mo-
tion. This task was accomplished by �rst represent-
ing the set of Cartesian components for all markers
in terms of their �rst seven principal components[12]
which account for more that 96% of the total vari-
ance observed in the data. After that, a minimum
mean squared error (MMSE) procedure was used to
�nd estimators of these principal components based
exclusively on vocal tract data and on orofacial data.
Finally, these estimators were applied to the test data
to �nd principal components from which the Carte-
sian components were recoverd. Fig. 3 shows oro-
facial temporal patterns estimated from vocal tract
data compared with the original patterns measured,
whereas Fig. 4 shows vocal tract temporal patterns
estimated from orofacial data compared with the
original patterns. In both cases the matching is fairly
good. When all data are considered, it is veri�ed
that vocal tract and orofacial position data account
respectively for 96% and 77% of the total variance
observed.

3.3 Dynamical Model

The dynamical relations between muscular activity
(measured through EMG) and vocal tract and orofa-
cial motions are currently being modeled using a sec-
ond order multilinear autoregressive process which is
mathematically expressed as

y
m
� A1ym�1 +A2ym�2 +B1um�1; (1)

where y
m

and um are respectively the position and
EMG vectors at time m, and A1, A2 and B1 are co-
e�cient matrices estimated from training data. Re-
sults for test data are shown in Fig. 5.2

2During the measurements only one muscle of the jaw was

observed. This was not su�cient to obtain a good estimation

3.4 Acoustic Correlates

Although the laws that govern sound propagation in
the vocal tract are not simple, there are phonetically
important parameters in the speech acoustics that
are directly related to the position of the face and vo-
cal tract. A good example is given in Fig. 6 where the
speech RMS amplitude is estimated (for test data)
from di�erent subsets of the measured components.
Note the rather high correlation coe�cient obtained
when only facial points are used in the estimation.3

4 CONCLUSION

The results obtained with the combination of vo-
cal tract and orofacial motion measurements con�rm
that, during speech, orofacial motion is basically a
consequence of vocal tract motion. Moreover, it was
observed that a surprisingly high amount of informa-
tion (77% of the total variance of the data analyzed)
about vocal tract behavior can be extracted from oro-
facial motion.
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of the jaw, a�ecting all other components. To eliminate the
e�ects of this problem the error in each component that could
be estimated from the jaw error was subtracted in Fig. 5.

3Inner and outer points correspond to the markers placed

respectively inside and outside the dashed line shown in Fig. 2.
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Figure 3: Orofacial temporal patterns estimated from
vocal tract data (gray) compared with measured pat-
terns (black).
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Figure 4: Vocal tract temporal patterns estimated from
orofacial data (gray) compared with measured patterns
(black).
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Figure 5: AR modeled temporal patterns estimated
from EMG (gray lines) compared with measured pat-
terns (black thin lines) and with patterns with \unpre-
dictable" jaw components removed (black thick lines).
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Figure 6: Speech amplitude (RMS) linearly estimated
from several sets of data (gray lines) compared with
measured data (black lines).


