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ABSTRACT In the image-based approach, the whole set of image
pixels is processed. Various techniques have been used:

This paper presents a method for the extraction of Colour transformation of the image texture in order to
articulatory parameters from direct processing of raw e€xtractlips area [6, 9]; optical flow analysis [8], etc.
images of the lips. The system architecture is made of
three independent parts. First, a new greyscale mouth Both model-based and image-based methods can benefit
image is centred and downsampled. Second, the imagefrom information reduction through multidimensional
is aligned and projected onto a basis of artificial images. analysis such as Principle Component Analysis (PCA).
These images are the eigenvectors computed from aln the model-based approach, the model deformation
PCA applied on a set of 23 reference lip shapes. Then, may be limited to the main variation modes of its
a multilinear interpolation predicts articulatory ~ control parameters (Active Shape Models [7], B-spline
parameters from the image projection coefficients onto model [5]). In the image-based approach, PCA has
the eigenvectors. In addition, the projection coefficients Shown its powerfulness to dramatically decrease image
and the predicted parameters were evaluated by aninformation since the pioneering works by [10] in face
HMM-based visual speech recogniser. Redtmm recognition (eigenfaces), later applied to raw images of
scores obtained with our method are compared to the mouth [3, 4].

reference scores and discussed.
3. OUR VISEME-BASED APPROACH

1. INTRODUCTION Working on a corpus consisting of 786 repetitions of
sentences "c'est pas;4V.C.V.z", [2] identified 23

There are two main approaches to the processing of classes of lip shapes as representatives of expressionless

mouth images in automatic lipreading. The stochastic sp_eech productipn by onmale. speaker of French
approach makes wide use of learning techniques (Figure 1). In this corpus, the lips of the speaker were

providing image features poorly interpretable. The carefully made-up in blue so that several articulatory

articulatory approach aims at measuring as accurately asParameters could be accurately megsured by a
possible anatomical and/or geometrical parameters chromakey system [6] on a set of phonetically labelled

which can be interpreted in phonetic terms. Although images from front and profile.
the method here proposed involves image processing

techniques generally used in the stochastic approach, it U2
is articulatory-oriented indeed. It gives some 3 ‘f -d‘_ af
description of a mouth shape in phonetic terms with :Bi. u . 3 Y
regard to phonetically labelled visemes [2]. It also gives "y -& an
a reliable evaluation of geometric parameters of the lips Bu wv .J.-u #Ju U1
that could not be automatically measured on natural lips —_— _ -
without prior make-up. "Zf % 2k - =

I - €

2. THE DIFFERENT APPROACHES TO --E:# - ‘?:
AUTOMATIC LIPREADING ___; v
clos

There are two main classes of systems: those model-

based and those image-based. Figure 1. Projection of the 23 identified visemes onto the first

In the model-based systems, a geometrical model of the two components of a PCA performed on lip parameters.

lip contours (external and/or internal) is applied directly

to the input image of the Speaker‘s ||pS Splines [5] and The identiﬁcaﬂon Of the 23 VisemeS I’eSU|'[S from a set Of

polynomial equations [11] are commonly used for Multidimensional analyses (clustering, correspondence,

liptracking. and discrimination) performed on the articulatory
parameters measured. These 23 visemes include



coarticulated vowels and consonants in various phonetic
contexts. They can be interpreted as an optimal

coverage of the labial space, as defined by geometrical
lip parameters. Of course, there is no unique link

between such a viseme and a phoneme which is only
defined as a phonological symbol. For instance, the /a/
uttered in a /z/ context is classified into the so-called

viseme [i] that also includes a steady /i/.

4. IMAGE PROJECTION

From the 23 visemes identified, 23 representative
greyscale images centred on the lips have been selected
and downsampled to 32x24=768 pixels. As the viseme
images came from different sequences, they have been Figure 2. The first two eigenvisemes. The image at the center
spatially aligned to the reference image of the correspondg to the average image of the 23 visemes image;.
prephonatory viseme to suppress head movements. ForlAlor.‘g the el'.genveCtirS' d‘?jrker sreas drepresem a decrease in
this, a gradient descent algorithm in X and Y was used uminance (lips vs. skin and teeth), and vice-versa.
to optimise the correlations between the reference
viseme and the others. The 23 adjusted images
provided a first basis dfi’®® vectors on which any new
lip image could be projected and thus described by only
23 coordinates. Though a set of 23 images is already a
limited training set compared to similar image-based
approaches [3], a PCA applied to these 23 images
showed that some redundancy still exists: The first four , -
(resp. eleven) eigenvectors account for 80% (resp. 95% A B S A B
of the total variance. We call eigenvisemes the 22 Ul 0.37 0.37 10.39 0.16 0.33
artificial images corresponding to the resulting U2 0.07 0.21 014 1-0.45 |031
eigenvectors. Any subset of these eigenvisemes provide Figure 3. The first two eigenvectors in lip parameters space
a new vector basis to perform image projection on an o ] )
orthonormal image space of lower dimension. These similarities allow us to hypothesize that our lip
parameters could be predicted from the coordinates of
Some similarities in structure were observed between a0y lip image along the 22 eigenvisemes, or a subset
the space defined by the eigenvectors from the PCA thereof.
applied on thdip parametersmeasured on the visemes
and the space defined by the eigenvectors from the PCA 5. PARAMETER PREDICTION
applied on themagesof the visemes. The correlation
between visemes coordinates in the "parameter space"We have implemented a multilinear interpolation to
and in the "image space" along the first (resp. the predict the geometrical lip parameters from the
second) eigenvector is r=.91 (resp. r=.87). coordinates of an image along the image space defined
by the eigenvisemes. Prior to that, the geometrical
Figure 2 shows the image representation of the first two Parameters must be accurately measured on the 23
eigenvisemes. An articulatory interpretation of these images of the visemes to serve as interpolation points.
eigenvisemes can be proposed. The first eigenviseme
can be considered as an Opposition between a closedIn the general case of a multilinear interpolation, the
shape and an open one. The second eigenviseme mayprediction of a vector Y (e.g., the 11 lip parameters)
be seen as an opposition between a spread shape and §om a vector X (e.g., a 32x24 image) can be formulated
rounding one. This is confirmed by the distribution of &S
the 23 visemes projected on the two first eigenvectors. Y =2t mdi(X) W = W D(X)
Due to the correlations mentioneboge, the projections  \here W are unknown vector coefficients an®){s m
are similar in the images space and lip parameters js a pasis ofn functions (here we use the m projection
space. The first axis opposes /Aj/, /a/, /il (open) to /B/, onto the first m eigenvisemes). From the m coordinates
/Bul, IVI (closed) for example (see Figure 1). The of the 23 visemes on the m eigenvisemes and their 23
second one opposes /i/, /Iz/, /bl (spread) to /Ju/, /o], IAJl associated sets of measured lip parameters, the values of
(rounded). the 11 parameters allow to define W.

Another interpretation of the eigenvectors can be made
from those calculated with the PCA applied on the lip
parameters (Figure 3). An increase of both height and
width parameters can be seen along the first
eigenvector, whereas the outer height increases and the
outer width decreases along the second eigenvector.




P=W&d\)=W (EV)O W=P (EV)" repetitions in the testing set. Five permutations were
where P is the 11x23 matrix of eleven lip parameters finally tested in each experimental condition.
measured on the 23 visemes, V is the 768x23 matrix of _ -
the greyscale images of the visemes, E is the 768x(m) 6.1. Results in the CK/CK condition

matrix of the greyscale images of m eigenvisemes, and . _
(E'V)*is the pseudo-inverse of'(®). The purpose of this test was to obtain reference scores

from the accurate measurement system to serve as a
Before proiection, a new greyscaie image is centred on baseline for the others. Seven frontal parameters were
the mean image of the 23 visemes by Subtracting the used in this condition: Inner helght, width and area,
average vector. It is then aligned by minimising the outer height and width; upper and lower lip area. Over
difference between the original image and its the 5 permutations, the mean score was 77.8 % and
reconstruction from the basis [10] to reduce the loss of ranged between 72.% and 82.4 %.

information introduced by the projection onto the
eigenvisemes. 6.2. Results in the PC/PC condition

Finally, the vector of parameters Y can be estimated This test evaluates to which extent projections on
from an image X, as eigenvisemes are representative okesh vaiation

Y =W (EX)=P (EV)" (EX) (Figure 5).

6. EVALUATION

To evaluate our system, we used the same corpus as [2]
where the speaker's lips were made up in blue. The
corpus was made of 486 sentences corresponding to 9
repetitions of 54 sentences. This allowed us to compare
the accurate measurement of the chromakey system and
the prediction from our system, even though our system
is greyscale based and thus requires no special make-up.
An example of parameter prediction is shown in
Figure 4. Inner contour area and outer contour width
prediction are compared to their actual value accurately

measured with a chromakey technique along an /azyzaz/ ~_Figure 5. Recognition scores in the PC/PC condition.
sequence of 760 ms (38 frames) The X-axis shows the number of first eigenvectors used.
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The first two eigenvisemes alone perform 67.8% of
correct recognition on average. It is the highest mean
recognition score. The first PC alone leads to only 50%
correct identification, and more than two eigenvectors
tends to lightly decrease the performance too. This
result shows that most of speech infation is
accounted for by the first two eigenvectors only.

g 250
E
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S —— 0 A 6.3. Results in the PP/PP condition
Figure 4. Left : Inner contour area (MmRight : Outer This test presents the results obtained with seven frontal
contour width (mm); measured parameter is in dot line, parameters (same as the measured parameters used in §
predicted in full line. 6.1) predicted by our method from different subsets of

. o the first eigenvisemes (Figure 6).
The capacity of our parameters prediction to render

relevant speech inforation was tested by an HMM-  pagits are highly similar to those obtained in the

based automatic Iipieader [1]. Four training/test pravious test, which is not surprising since the same
conditions were tested: CK/CK, CK/PP, PP/PP, PCIPC, intormation is only presented differently, up to a linear

where CK stands for  "chromakey-measured” ombination (see § 5).
parameters, PC for principal component on images, and

PP for predicted parameters. A jack-knife technique

was used to increase the number of training/test

conditions with 7 repetitions in the training set and 2
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Figure 6. Test and training in PP/PP condition
6.4. Results in the CK/PP condition
This test evaluates the capacity of our system to predict

accurately the value of the seven above mentioned
parameters from raw images. In this case, the training

set consisted of accurately measured parameters whereas

the test set consisted of predicted parameters.
Recognition scores are presented on Figure 7, depending
on the number of eigenvectors used to predict the

parameters in the test set.
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Figure 7. Test and training in CK/PP condition

Most of the errors come from confusions between /a/
and /i/, b/ and N/, and /I and /r/. This could be
explained by the very low resolution that we used for the
images (32x24). At this resolution, small variation of
opening does not clearly appear.

Although clearly lower than the scores obtained in 86.1,
the scores here obtained are wélbwe chance level. A
third of the 54 words are correctly recognised when all
22 eigenvectors are taken into account. Except for the
noticeable peak observed when the first two
eigenvisemes only are considered, performance
continuously improves as the number of eigenvectors
used increases. This last observation should be
interpreted together with the evolution of the PC/PC
scores presented in 86.2: The third and following
eigenvisemes are probably not necessary to account for
the variability associated with the *®grh" infomation
contained in our lip images. However, the two
techniques used are not strictly comparable, since image
processing stores an important information related to
the visibility of the teeth and of the tongue which is not
processed in the reference "chroma-key" technique.

7. CONCLUSION

We have presented in this paper a complete method to
predict articulatory parameters from raw images. The
evaluation tests tends to show thaeesgh vaiation is
mostly contained in the first two eigenvectors of a PCA
applied to reference images.

Future work will investigate further how to best code
visual speech vation. Another major improvement
will be to allow the system automatically select an
appropriate set of visemes.
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