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ABSTRACT

This paper presents a method for the extraction of
articulatory parameters from direct processing of raw
images of the lips.  The system architecture is made of
three independent parts.  First, a new greyscale mouth
image is centred and downsampled.  Second, the image
is aligned and projected onto a basis of artificial images.
These images are the eigenvectors computed from a
PCA applied on a set of 23 reference lip shapes.  Then,
a multilinear interpolation predicts articulatory
parameters from the image projection coefficients onto
the eigenvectors.  In addition, the projection coefficients
and the predicted parameters were evaluated by an
HMM-based visual speech recogniser.  Recognition
scores obtained with our method are compared to
reference scores and discussed.

1. INTRODUCTION

There are two main approaches to the processing of
mouth images in automatic lipreading.  The stochastic
approach makes wide use of learning techniques
providing image features poorly interpretable.  The
articulatory approach aims at measuring as accurately as
possible anatomical and/or geometrical parameters
which can be interpreted in phonetic terms.  Although
the method here proposed involves image processing
techniques generally used in the stochastic approach, it
is articulatory-oriented indeed.  It gives some
description of a mouth shape in phonetic terms with
regard to phonetically labelled visemes [2].  It also gives
a reliable evaluation of geometric parameters of the lips
that could not be automatically measured on natural lips
without prior make-up.

2. THE DIFFERENT APPROACHES TO
AUTOMATIC LIPREADING

There are two main classes of systems:  those model-
based and those image-based.
In the model-based systems, a geometrical model of the
lip contours (external and/or internal) is applied directly
to the input image of the speaker's lips. Splines [5] and
polynomial equations [11] are commonly used for
liptracking.

In the image-based approach, the whole set of image
pixels is processed.  Various techniques have been used:
Colour transformation of the image texture in order to
extract lips area [6, 9]; optical flow analysis [8], etc.

Both model-based and image-based methods can benefit
from information reduction through multidimensional
analysis such as Principle Component Analysis (PCA).
In the model-based approach, the model deformation
may be limited to the main variation modes of its
control parameters (Active Shape Models [7], B-spline
model [5]).  In the image-based approach, PCA has
shown its powerfulness to dramatically decrease image
information since the pioneering works by [10] in face
recognition (eigenfaces), later applied to raw images of
the mouth [3, 4].

3.  OUR VISEME-BASED APPROACH

Working on a corpus consisting of 786 repetitions of
sentences "c'est pas V1C1V2C1V1z", [2] identified 23
classes of lip shapes as representatives of expressionless
speech production by one male speaker of French
(Figure 1).  In this corpus, the lips of the speaker were
carefully made-up in blue so that several articulatory
parameters could be accurately measured by a
chromakey system [6] on a set of phonetically labelled
images from front and profile.
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Figure 1. Projection of the 23 identified visemes onto the first
two components of a PCA performed on lip parameters.

The identification of the 23 visemes results from a set of
multidimensional analyses (clustering, correspondence,
and discrimination) performed on the articulatory
parameters measured. These 23 visemes include



coarticulated vowels and consonants in various phonetic
contexts.  They can be interpreted as an optimal
coverage of the labial space, as defined by geometrical
lip parameters.  Of course, there is no unique link
between such a viseme and a phoneme which is only
defined as a phonological symbol.  For instance, the /a/
uttered in a /z/ context is classified into the so-called
viseme [i] that also includes a steady /i/.

4. IMAGE PROJECTION

From the 23 visemes identified, 23 representative
greyscale images centred on the lips have been selected
and downsampled to 32x24=768 pixels. As the viseme
images came from different sequences, they have been
spatially aligned to the reference image of the
prephonatory viseme to suppress head movements.  For
this, a gradient descent algorithm in X and Y was used
to optimise the correlations between the reference
viseme and the others.  The 23 adjusted images
provided a first basis of ℜ768 vectors on which any new
lip image could be projected and thus described by only
23 coordinates.  Though a set of 23 images is already a
limited training set compared to similar image-based
approaches [3], a PCA applied to these 23 images
showed that some redundancy still exists: The first four
(resp. eleven) eigenvectors account for 80% (resp. 95%)
of the total variance.  We call eigenvisemes the 22
artificial images corresponding to the resulting
eigenvectors.  Any subset of these eigenvisemes provide
a new vector basis to perform image projection on an
orthonormal image space of lower dimension.

Some similarities in structure were observed between
the space defined by the eigenvectors from the PCA
applied on the lip parameters measured on the visemes
and the space defined by the eigenvectors from the PCA
applied on the images of the visemes.  The correlation
between visemes coordinates in the "parameter space"
and in the "image space" along the first (resp. the
second) eigenvector is r=.91 (resp. r=.87).

Figure 2 shows the image representation of the first two
eigenvisemes.  An articulatory interpretation of these
eigenvisemes can be proposed.  The first eigenviseme
can be considered as an opposition between a closed
shape and an open one.  The second eigenviseme may
be seen as an opposition between a spread shape and a
rounding one.  This is confirmed by the distribution of
the 23 visemes projected on the two first eigenvectors.
Due to the correlations mentioned above, the projections
are similar in the images space and lip parameters
space. The first axis opposes /Aj/, /a/, /i/ (open) to /B/,
/Bu/, /V/ (closed) for example (see Figure 1).  The
second one opposes /i/, /Iz/, /Ib/ (spread) to /Ju/, /o/, /Aj/
(rounded).
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Figure 2. The first two eigenvisemes.  The image at the center
corresponds to the average image of the 23 visemes images.
Along the eigenvectors, darker areas represent a decrease in
luminance (lips vs. skin and teeth), and vice-versa.

Another interpretation of the eigenvectors can be made
from those calculated with the PCA applied on the lip
parameters (Figure 3).  An increase of both height and
width parameters can be seen along the first
eigenvector, whereas the outer height increases and the
outer width decreases along the second eigenvector.

A B S A' B'
U1 0.37 0.37 0.39 0.16 0.33
U2 0.07 0.21 0.14 −0.45 0.31

Figure 3. The first two eigenvectors in lip parameters space

These similarities allow us to hypothesize that our lip
parameters could be predicted from the coordinates of
any lip image along the 22 eigenvisemes, or a subset
thereof.

5. PARAMETER PREDICTION

We have implemented a multilinear interpolation to
predict the geometrical lip parameters from the
coordinates of an image along the image space defined
by the eigenvisemes.  Prior to that, the geometrical
parameters must be accurately measured on the 23
images of the visemes to serve as interpolation points.

In the general case of a multilinear interpolation, the
prediction of a vector Y (e.g., the 11 lip parameters)
from a vector X (e.g., a 32x24 image) can be formulated
as

Y = Σi=1...m ϕi(X) Wi = W Φ(X)

where Wi are unknown vector coefficients and (ϕi)i=1...m

is a basis of m functions (here we use the m projection
onto the first m eigenvisemes).  From the m coordinates
of the 23 visemes on the m eigenvisemes and their 23
associated sets of measured lip parameters, the values of
the 11 parameters allow to define W.



P = W Φ(V) = W (Et V) ⇒ W = P (Et V)+

where P is the 11x23 matrix of eleven lip parameters
measured on the 23 visemes, V is the 768x23 matrix of
the greyscale images of the visemes, E is the 768x(m)
matrix of the greyscale images of m eigenvisemes, and
(Et V)+ is the pseudo-inverse of (Et V).

Before projection, a new greyscale image is centred on
the mean image of the 23 visemes by subtracting the
average vector.  It is then aligned by minimising the
difference between the original image and its
reconstruction from the basis [10] to reduce the loss of
information introduced by the projection onto the
eigenvisemes.

Finally, the vector of parameters Y can be estimated
from an image X, as

Y = W ( Et X) = P (Et V)+ (Et X)

6. EVALUATION

To evaluate our system, we used the same corpus as [2]
where the speaker's lips were made up in blue. The
corpus was made of 486 sentences corresponding to 9
repetitions of 54 sentences.  This allowed us to compare
the accurate measurement of the chromakey system and
the prediction from our system, even though our system
is greyscale based and thus requires no special make-up.
An example of parameter prediction is shown in
Figure 4. Inner contour area and outer contour width
prediction are compared to their actual value accurately
measured with a chromakey technique along an /azyzaz/
sequence of 760 ms (38 frames).
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Figure 4. Left : Inner contour area (mm2); Right : Outer
contour width (mm); measured parameter is in dot line,
predicted in full line.

The capacity of our parameters prediction to render
relevant speech information was tested by an HMM-
based automatic lipreader [1]. Four training/test
conditions were tested: CK/CK, CK/PP, PP/PP, PC/PC,
where CK stands for "chromakey-measured"
parameters, PC for principal component on images, and
PP for predicted parameters.  A jack-knife technique
was used to increase the number of training/test
conditions with 7 repetitions in the training set and 2

repetitions in the testing set.  Five permutations were
finally tested in each experimental condition.

6.1. Results in the CK/CK condition

The purpose of this test was to obtain reference scores
from the accurate measurement system to serve as a
baseline for the others.  Seven frontal parameters were
used in this condition: Inner height, width and area;
outer height and width; upper and lower lip area. Over
the 5 permutations, the mean score was 77.8 % and
ranged between 72.% and 82.4 %.

6.2. Results in the PC/PC condition

This test evaluates to which extent projections on
eigenvisemes are representative of speech variation
(Figure 5).
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Figure 5. Recognition scores in the PC/PC condition.
The X-axis shows the number of first eigenvectors used.

The first two eigenvisemes alone perform 67.8% of
correct recognition on average.  It is the highest mean
recognition score.  The first PC alone leads to only 50%
correct identification, and more than two eigenvectors
tends to lightly decrease the performance too.  This
result shows that most of speech information is
accounted for by the first two eigenvectors only.

6.3.   Results in the PP/PP condition

This test presents the results obtained with seven frontal
parameters (same as the measured parameters used in §
6.1) predicted by our method from different subsets of
the first eigenvisemes (Figure 6).

Results are highly similar to those obtained in the
previous test, which is not surprising since the same
information is only presented differently, up to a linear
combination (see § 5).
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Figure 6. Test and training in PP/PP condition

6.4. Results in the CK/PP condition

This test evaluates the capacity of our system to predict
accurately the value of the seven above mentioned
parameters from raw images.  In this case, the training
set consisted of accurately measured parameters whereas
the test set consisted of predicted parameters.
Recognition scores are presented on Figure 7, depending
on the number of eigenvectors used to predict the
parameters in the test set.
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Figure 7. Test and training in CK/PP condition

Most of the errors come from confusions between /a/
and /i/, /b/ and /v/, and /l/ and /r/. This could be
explained by the very low resolution that we used for the
images (32x24). At this resolution, small variation of
opening does not clearly appear.

Although clearly lower than the scores obtained in §6.1,
the scores here obtained are well above chance level.  A
third of the 54 words are correctly recognised when all
22 eigenvectors are taken into account.  Except for the
noticeable peak observed when the first two
eigenvisemes only are considered, performance
continuously improves as the number of eigenvectors
used increases. This last observation should be
interpreted together with the evolution of the PC/PC
scores presented in §6.2: The third and following
eigenvisemes are probably not necessary to account for
the variability associated with the "speech" information
contained in our lip images.  However, the two
techniques used are not strictly comparable, since image
processing stores an important information related to
the visibility of the teeth and of the tongue which is not
processed in the reference "chroma-key" technique.

7.  CONCLUSION

We have presented in this paper a complete method to
predict articulatory parameters from raw images.  The
evaluation tests tends to show that speech variation is
mostly contained in the first two eigenvectors of a PCA
applied to reference images.
Future work will investigate further how to best code
visual speech variation.  Another major improvement
will be to allow the system automatically select an
appropriate set of visemes.
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