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ABSTRACT

This paper describes a new approach for automatic
speechreading.  First, we use efficient, but effective
representation of visible speech: a geometric lip-
shape model.

Then we present an automatic objective method
to merge phonemes that appear visually similar into
visemes1 for our speaker.  In order to determine
visemes, we trained SOM2 using the Kohonen algo-
rithm on each phoneme extracted from our visual
database.

We go into the presentation of our visual speech
recognition systems based on heuristics and neural
networks (TDNN3 or JNN4) trained to discriminate
visual information.  On a continuous spelling task,
visual-alone recognition performance of about 37
% was achieved using the TDNN and about 33 %
using the JNN one.

1. INTRODUCTION

Several researchers have demonstrated, through
their models of visual or audio-visual recognition,
the potential use of visual information (mostly lip
shapes and movements) to improve the robustness
and accuracy of speech recognition systems [1, 4,
5, 9].

Our own work in this area [2] was focused on
the elaboration of an optimal integration strategy of
audio and visual sources for automatic speech rec-
ognition.  The results obtained show that separate
identification and asynchronous integration (also

                                                     
1 Generally, the visemes are defined as distinctive units
of lip-jaw shapes and movements.
2 The Self-Organising Map was introduced by [6].
3 The Time-Delay Neural Network was designed by [11].
4 Work by [10] has proposed the Jordan partially recur-
rent Neural Network.

called late integration) is more promising than di-
rect integration.  In order to improve its perform-
ance, we have to reinforce the purely visual identi-
fication by using:
• visual-specific recognition units: visemes.  In

fact, the phonemes are not suitable to label vis-
ual data because different sounds may be similar
at the visual level;

• appropriate visual pre-processing and classifi-
cation approaches.  For example: whereas the
parametrisation of acoustic data is well estab-
lished, it is not the same for the visual data.

However, grouping of visually similar pho-
nemes into viseme is not straightforward, because
of:
• P1: coarticulation effects of adjacent sounds [3];
• P2: environmental effects (e.g. lighting);
• P3: articulatory differences among speakers [7].

Regarding visual speech modelling, works by
[1, 8] have shown that a geometric model of the
visible speech articulators gives satisfactory results
for automatic speechreading.

This paper presents a variant of the previous
geometric model of visible speech and a novel con-
nectionist approach to determine visemes for our
speaker.  As concerns visual classification ap-
proach, we propose two purely-visual speech rec-
ognition systems using neural networks (TDNN
and JNN) and heuristic rules.

We demonstrate the potential use of these sys-
tems on a connected word recognition problem.
Without using any lexical, syntactic or acoustic
rules, visual-alone recognition of 37 % is achieved
using the TDNN and about 33 % using the JNN.



2. VISUAL PRE-PROCESSING
TECHNIQUES

2.1 Parametrisation of Visual Data

Whereas the parametrisation of acoustic data is
well established, it is not well known which visual
features carry the most relevant speech information
and which models of the visible speech are most
suitable for automatic speechreading.

We decided to use a geometric lip-shape based
model for visible speech.  This choice was moti-
vated on the one hand, by the fact that such a model
is insensitive to some environmental effects, like
lighting (P2), and on the other, because its configu-
ration could be described by a small set of pa-
rameters.  This model is build on previous re-
searches [5, 8] and uses geometric measures on the
internal lip shape of the speaker: height, width and
area.

In addition to these static visual speech features
(obtained by image processing each 20 ms), we
investigate the dynamic of lip shape.  For each
feature, we compute the first derivative, its change
between successive frames, and the second one.
Each image frame is represented as a vector con-
taining the values of these 9 visual features of
which two thirds represent dynamic features and
only one third represents static features.

Notice that most of the features kept pertain to
the derivatives, according to our believe that the
evolution of visual parameters is most significantly
than their values.

2.2 Determining Visemes

The existence of articulator differences among
various speakers (P3) affects the number of viseme
categories and their respective constituents.  By the
way, the use of an automatic method to determine
the viseme groups suitable for our speaker, be-
comes necessary.

We determine visemes from the training set of
our audio-visual database.  The acoustic sentences
were phonetically transcribed and hand-segmented.
Firstly, we use the projections of phonemic
boundaries from acoustic signal on articulator sig-
nals to anchor fixed-size visual segments.  In order
to cover the visual realisation of any phoneme,
each segment correspond to seven image frames.

While the evolution of a phoneme at visual level
is analysed through 140 ms of signal, the phonetic

transitions appear to be modelled with theirs re-
spective phonemes.  This is particularly true for the
consonant phonemes.  In this way, we take into
account the coarticulation phenomenon (P1).

Table 1: Viseme classes

In order to facilitate the clustering of visually
similar phonemes in a homogeneous space, we first
separate them into consonants and vowels.  Then
Self-Organising Map, also called Kohonen feature
map, (SOM) [6] is used to construct topology-
preserving mapping of training data, where the
location of a unit carries semantic information.  In
contrast to most other algorithms for neural net-
works, learning for SOM is unsupervised and by
the way do not require additional knowledge.

The SOM was trained using the algorithm of
Kohonen on each phoneme of segmented sen-
tences.  Visually similar 22 French phonemes are
clustered into 13 visemes, yielded table 1.  Most of
visemes obtained for our speaker by computation
appear to be consistent with those discussed by
other lip-reading researchers such as names [5, 7].
That confirm, on the one hand that our clustering
algorithm is appropriate for the phonemes grouping
and on the other the pertinence of our visible
speech parametrisation.

3. VISUAL SPEECH RECOGNITION
SYSTEMS

3.1 System Description

Previous pre-processing furnish a feature vector
description of phonologically important visual in-
formation.  Thus, we model the visible by repre-
senting each sentence as a sequence of visual
speech vectors.

Consonant
visemes

/p, b, m/
/f, v/
/s, z, t/
/d, k/

/j, ∫/
/r, l/
/g/
/n/

Vowel
visemes

/a/
/e, i/
/u, o/

/Φ/
/y/



Figure 1: Architecture of visual speech recognizer

Figure 1 depicts our visual speech recognition
system based on neural networks and heuristics.
The system learn to convert the input visual-vector
sequence into a recognised sequence of visemes.

Classification of visual sequences has to deal
with the inherent temporal dimension of visible
speech.  TDNN and JNN have been chosen as clas-
sifiers due to their capability to take into account
time.

The classification of visual sequences uses no
lexical or syntactic rules.  In order to reduce recog-
nition hypotheses, training sentences were used to
extract heuristic rules including information about
the global viseme duration and the per-frame score
of each viseme-like state.

3.2 TDNN Based Classifier

The first purely-visual system is based on TDNN
which seems to be very well suited for low-level
viseme classification [11] and perform as time-shift
invariant feature extractor.

Figure 2 shows the architecture of an TDNN
and yields the manner in which it treat with the
temporal dimension of speech: by introducing fixed
delay on the input and hidden layers.  On the input
layer a fixed delay of 60 ms seems to be sufficient
to represent low-level visual-phonetic events.  The
choice of a 150 ms delay for the hidden layer was
made in order to represent a higher-level contextual
visual event.

The backpropagation (thoughtlessly modified)
algorithm was applied to train the network to fit
viseme targets.

Figure 2: TDNN based classifier

3.3 JNN Based Classifier

Figure 3: JNN based classifier

Figure 3 yields pre-processed visual data feed-
ing the JNN inputs.  Time is taken into account by
the fact that the state of each neurone depends on
actual visual input vector, but also on the previous
state of output layer.  The standard backpropaga-
tion algorithm for partial recurrent networks was
used to train this neural network.

4. TEST TASK AND RESULTS

We experiment our system on French spelling task.
Utterances are visual data of a test person pro-
nouncing nonsense four-letter sequences without
pauses.  The task might be equivalent to continuous
recognition with small, but highly confusing vo-
cabulary.

Time

60 ms

150 ms

Viseme layer

Hidden layer

Input layer

Visual feature
vectors I(t)

State of output
layer O(t-1)

O(t) Viseme layer

Hidden layer

Input layer

Visual-vector
sequences

classification

Distant hypotheses
discarding

Visible speech

Recognised viseme
sequence

Heuristics



Classifier TDNN JNN

without viseme boundaries 37 % 33,33 %

with known viseme boundaries 57 % 53 %

Table 2: System performances

The corpus realised at the ICP-Grenoble, it is
composed of 200 utterances, of which one third
was used as training data to set the weights of neu-
ral networks, one third for cross-validation and the
last one for test.

As we yield table 2, our system achieved 37 %
viseme accuracy using the TDNN based classifier
and only about 33 % using the JNN one.  This dif-
ference is due to the fact that the JNN seems to
need more training data.  These performances were
obtained without the aid of acoustic, lexical or
syntactic guides, and confirm the importance of
visual cues in automatic speech perception.  It
should be noted that a lot of errors are caused by
insertion and deletion.  When we presented the
visual sentences with known viseme boundaries,
we came to visual accuracy of up to 57 % using the
TDNN and 53 % using JNN.

5. CONCLUSION

In order to improve the accuracy of our previous
audio-visual speech recognition system [2], we
have to reinforce the purely-visual identification by
using a viseme set suitable for our speaker.  Thus,
the use of an automatic method to determine the
viseme groups becomes necessary.  Then, a contin-
uos visual speech recognition system is used to test
the appropriateness of the obtained viseme set.

This paper presents a continuos visual speech
recognition system based on geometric lip-shape
models and neural networks.  The preliminary re-
sults are promising, comparable to those obtained
by [4] and [5] for equivalent recognition task, but
not as good as the ones reported in [9].  One reason
might be that last results are obtained for a less
complex recognition task.

Our visual recognition system can be further re-
fined by using an appropriate pre segmentation
technique of visual data.  We are also on the way to
largely increase our corpus in order to improve
neural network training.  The visual system will
contribute significantly to the achievement of ro-
bust and accuracy speech recognition at the time of
integration with an acoustic one.
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