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ABSTRACT

This paper describes recent speechreading experi-
ments for a speaker independent continuous digit
recognition task. Visual feature extraction is per-
formed by a lip tracker which recovers information
about the lip shape and information about the grey-
level intensity around the mouth. These features are
used to train visual word models using continuous
density HMMs. Results show that the method gen-
eralises well to new speakers and that the recognition
rate is highly variable across digits as expected due
to the high visual confusability of certain words.

1. INTRODUCTION

Current speechreading (or lipreading) systems have
mainly been evaluated for small vocabulary, speaker
dependent, isolated speech recognition tasks [8]. One
of the main difficulties in speechreading, however, is
to cope with the large appearance variability across
subjects and to extract visual speech features which
generalise well for new speakers. Appearance variab-
ility might for example be due to differences of lips,
teeth, skin, facial hair, or due to different visual ar-
ticulation. Additional variability can be introduced
by different pose of the subject or by different light-
ing conditions. To be usable in real-world applica-
tions, a speechreading system should ideally be ro-
bust to all these factors.

These variabilities can cause severe problems in
the extraction of visual speech features. Several re-
searchers have therefore performed simplified spee-
chreading experiments by painting the subject’s lips
with a reflective marker, by performing experiments
on one subject only, or by using controlled recording
environments. Most applications however require the
image analysis to be performed on natural images
and under different environmental conditions. This
paper describes speechreading experiments where
visual features are automatically extracted without
the use of visual aids on a database of 37 subjects.
Results are presented for a speaker independent con-
tinuous digit recognition task.

2. DATABASE

The M2VTS audio-visual database [7] was used for
all experiments. It contains 185 recordings of 37
subjects (12 females and 25 males). Fach record-
ing contains the acoustic and the video signal of
the continuously pronounced French digits from zero
to nine. Five recordings have been taken of each
speaker, at one week intervals to account for minor
face changes like beards. For each person, the shot
with the largest imperfection was labelled as shot 5.
This shot differs from the others in face variation
(head tilted, unshaved beards), voice variation (poor
voice SNR) or shot imperfections (poor focus, dif-
ferent zoom factor). Additional imperfections apart
from those of shot 5 are due to some people who
were smiling while speaking. The database contains
a total of over 27,000 colour images which were con-
verted to grey-level images for the experiments re-
ported here.

3. VISUAL FEATURE EXTRACTION

The method for visual feature extraction is based
on a lip tracker which has been described in detail
in [4, 6]. A point distribution model (PDM), also
called active shape model (ASM) when used in image
search [2], is used to model the shape of the lips.
PDMs are flexible models which represent an object
by a set of labelled points. The points describe the
boundary or other significant locations of an object.

Shape deformation is modelled by decomposing a
shape into a weighted sum of basis shapes using a
Karhunen-Loéve (K-L) expansion. The basis shapes
are obtained from the statistics of a representat-
ive training set using principal component analysis.
This formulation of shape deformation constrains
the shape model to only deform to shapes similar
to the ones seen in the training set.

Similar to shape modelling, the texture around the
mouth area is modelled by decomposing the intens-
ities into a weighted sum of basis intensities using a
K-L expansion. Intensity modelling fulfils two pur-
poses: it is used as a mean for robust image repres-
entation for image search and for visual speech fea-
ture extraction. The basis vectors describe the in-



Figure 1: Examples of lip tracking results. The first
row demonstrates the robustness of the algorithm

for subjects with beard despite the reverse contrast
between lips and skin.

tensities in the area around the shape points. The
intensity space deforms with the shape of the model
and therefore represents shape independent intensity
information.

The intensity weight vector represents the grey-
levels near the lip contour and accounts for fea-
tures like the intensity of the oral cavity, visibility
of teeth and tongue, and finer details like protru-
sion. These parameters therefore contain important
visual speech information. Figure 1 shows some lip
tracking examples. Several subjects in the database
have a beard which makes lip tracking more difficult
and which increases the inter speaker variability of
extracted features.

Lip tracking is based on a distance measure
between the lip model and the image and a min-
imisation function which finds a minimum of this
distance over the model parameters. Visual features
can be recovered from the tracking results and
are represented by the normalised weights of the
basis shapes and the basis intensities. Much visual
speech information is contained in the dynamics
of lip movements rather than the actual shape
or intensity. Furthermore, dynamic information
might be more robust to linguistic variability, i.e.
intensity values of the lips and skin will remain
fairly constant during speech, while intensity values
of the mouth opening will vary during speech. On
the other hand, intensity values of the lips and skin
will vary between speakers, but temporal intensity
changes might be similar for different speakers and
robust to illumination. Similar comparisons can be
made with shape parameters. First order differential
parameters (delta parameters) of the shape and
intensity vectors were therefore used as additional
features.
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Figure 2: Sequence of HMM states for the words
“one” and “two” learned from 11 subjects.

4. VISUAL SPEECH MODELLING

A visual observation of an utterance is represented
by a sequence of visual feature vectors which are ob-
tained from the lip tracker. The feature vector can
consist of a combination of shape parameters, intens-
ity parameters, and additional delta parameters. It
is assumed that the feature vectors follow continuous
probability distributions which are modelled by mix-
tures of Gaussian distributions. It is further assumed
that temporal changes during speech are piece-wise
stationary and follow a first-order Markov process.

As usually done in the case of small vocabulary
ASR, whole word models were used, thus each word
class was represented by one HMM. The HMMs only
allowed self-loops and sequential transitions from the
current to the next state. The models were trained
using two training stages. In the first stage the mod-
els are trained using the word-segmented training
data. Each HMM is initialised by linear segmenta-
tion of the training vectors onto the HMM states,
followed by iterative Viterbi alignment and compu-
tation of the means and variances for each state.
In the case of multiple mixtures, the vectors for
each state are clustered by a modified K-Means al-
gorithm. The models are further re-estimated based
on ML estimation using the Baum-Welch procedure.
The second stage consists in embedded training us-
ing the Baum-Welch algorithm on the whole train-
ing sentences. The word models are concatenated
according to the transcriptions but no information
about word boundaries 1s used.

Since no transcription of the speech data was
available, the word boundaries of the training data
were found by a HMM based speech recognition sys-
tem which was used to segment and label the sen-
tences [3]. The recogniser used the known sequence
of digit word models, which were trained on the Poly-
phone database of IDIAP [1], and performed forced
alignment. The training data of the visual features
is therefore based on acoustic rather than visual seg-
mentation. It is likely that acoustic and visual seg-



Table 1: Speaker independent recognition accur-
acy for different training and test procedures using
HMMs with 8 states and 2 mixture components per
state.

Segmented Continuous

Recognition | Recognition
Segmented Training 60.2% 51.3%
Embedded Training 58.7% 58.5%

mentation is not identical, e.g. the visual segmenta-
tion is more difficult to determine, and visual an-
ticipation might precede the acoustic signal. The
acoustic signal is however often more reliable than
the visual signal, which favours the use of acoustic
segmentation for visual speech recognition.

Figure 2 displays the visualised HMM states of the
word models “one” and “two” trained on 11 speakers
[5] on the Tulipsl database of isolated digits. FEach
state 1s visualised by synthesising a lip instance using
the mean shape and mean intensity vector of that
HMM state.

Recognition was performed based on the max-
imum posterior probability in which the prior prob-
abilities for all word classes were assumed to be
equal. The Viterbi algorithm was used to calculate
the most likely state sequence.

5. EXPERIMENTS

Two recognition tasks were performed: one task was
continuous word recognition on the whole sentences
and the second task was defined as word recognition
on the segmented sentences. Although the first task
is continuous speech recognition, the sequence of the
digits was always the same from “zero” to “neuf”.
The words were therefore always spoken in the same
context, which usually simplifies continuous speech
recognition. The second task can be considered as
isolated word recognition but where the words were
spoken continuously. It was mainly performed to
obtain the recognition accuracy, given the acoustic
segmentation. All experiments were performed for
speaker independent tests on the first four shots of
the database using the leave-one-out procedure. One
experiment therefore consisted of 37 leave-one-out
tests, each made up of 1440 training words and 40
test words. This resulted in a total of 1480 test words
spoken by 37 subjects.

Visual features were obtained from lip tracking
results and consisted of 14 shape parameters, 10 in-
tensity parameters, scale, and temporal difference
parameters. This resulted in a 50-dimensional fea-
ture vector. Different HMM architectures were in-
vestigated by varying the number of states (1 - 10)
and the number of mixture components (1, 2, 4,
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Figure 3: Continuous speaker independent digit re-
cognition rate rate for different number of mixtures
as a function of the number of HMM states using
visual features only.

8). Since the HMMs only allowed sequential trans-
ition probabilities, those training segments where the
number of frames was below the number of HMM
states were excluded in the training and recognition
of segmented digits.

Highest continuous recognition results at 58.5%
accuracy were obtained using HMMs with eight
states and two mixture components per state. This
performance seems relatively high, considering the
high visual confusability between several words and
the difficult task of speaker independent continu-
ous speech recognition. It is unlikely that perfect
recognition for such a task using visual information
only can be obtained, whether for humans or for
machines.

The results for this HMM architecture using dif-
ferent training and test procedures are shown in
Table 1. Although continuous speech recognition is
usually much more difficult than isolated speech re-
cognition, the error rates for the procedure of seg-
mented training and testing are not much smaller
than for embedded training and continuous recog-
nition. This suggests that the acoustic segmentation
might not be adequate for visual word segmentation.
This assumption is supported by the fact that the
segmented recognition results for embedded train-
ing were lower than for segmented training. Con-
tinuous recognition results on the other hand im-
proved considerably after embedded training. The
relatively high performance for continuous word re-
cognition might however be due to the fact that the
words were always spoken in the same context.

Results for continuous digit recognition and em-
bedded training for different numbers of states and
mixtures are summarised in Fig. 3. The accuracy
increased substantially with the number of HMM
states. This suggests that the visual speech signal
might not contain quasi-stationary segments which



Table 2: Confusion matrix for continuous digit re-
cognition using HMMs with 8 states and 2 mixture
components per state.

0 1 2 3 4 5 6 7 8 9 De
Z€ero 132 0 2 1 0 0 0 0 2 o0 11
un 0 95 1 2 6 3 3 6 2 2 28
deux 3 092 1 0 1 3 2 8 5 33
trois 0 2 0 108 2 0 2 0 6 4 24
quatre| 0 1 3 0 72 2 4 4 7T 0 55
cing 1 4 2 0 3 5910 6 2 3 58
SixX 0 2 1 1 9 3 61 1 6 1 63
sept 1 3 3 0 4 5 4 8 3 10 35
huit 5 2 3 9 1 3 1 1 102 5 16
neuf 3 18 1 1 3 0 3 2 117 9
Ins 1 1 2 1 2 511 8 9 6

extend beyond a large number of feature vectors.
The smaller error rates could however also be due to
the smaller number of deletion errors resulting from
HMMs with more states. The performance also gen-
erally increased with the number of mixture com-
ponents. For HMMs with a large number of states,
only a few mixture components could be trained due
to the limited training data.

The confusion matrix for continuous word recog-
nition using HMMs with eight states and two mix-
ture components is shown in Tab. 2 (rows repres-
ent the actual digits, columns the recognised digits,
Del stands for deletion errors and Ins for insertion
errors). The word recognition rate of the system
varied considerably across different words. Visually
more distinct words like “zero”, “trois”, and “neuf”
obtained high recognition rates, whereas visually
less distinct words like “quatre”,“cing”, “six”, and
“sept” were harder to distinguish. These visually less
distinct digits are subject to very little facial move-
ments which therefore often resulted in deletion er-
rors. For the 1480 test words, the recognition res-
ults consisted of 918 correctly recognised words, 332
deletion errors, 230 substitution errors, and 53 in-
sertions. Deletion errors therefore accounted to over
half of the total errors.

6. CONCLUSION

The described continuous digit recognition experi-
ment represents one of the largest speechreading ex-
periments with regards to the number of speakers
and the size of the database. It also represents one of
the first speaker independent continuous speechread-
ing tests. The system obtained a word accuracy of
up to 58.5% for the given task, which seems relat-
ively high considering the difficult task. Digits which
are visually highly confusable caused most of the er-
rors but visually more distinct words obtained high

recognition rates; even for new subject and continu-
ous speech. About half of the recognition errors were
due to deletion errors as a result of the high visual
similarity between certain words. Some errors might
also be due to the small visual frame rate of 25 Hz
which i1s about 4 times lower than typical acoustic
frame rates and which might not capture all import-
ant speech events. Results suggest that the extracted
visual features and their modelling approach gener-
alise well to new speakers and enable successful con-
tinuous speechreading.
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