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Abstract

A new method is presented to quickly adapt a given

language model to local text characteristics. The ba-

sic approach is to choose the adaptive models as close

as possible to the background estimates while con-

straining them to respect the locally estimated uni-

gram probabilities. Several means are investigated to

speed up the calculations. We measure both perplex-

ity and word error rate to gauge the quality of our

model.

1 Introduction

Common speech recognition systems combine infor-

mations from an acoustical model and a language

model to �nd the most probably spoken sentence [9].

Well{trained language models use large text corpora

to estimate conditional word probabilities in the con-

text of the preceding n � 1 words. The resulting

n{grams represent the average text structures of the

training material, but fail to fully describe the 
uc-

tuations between individual texts.

Many language models thus include a cache com-

ponent to dynamically adapt to the characteristics

of the text just recognized [7]. The rather limited

cache size restricts the range of local estimates. The

most reliable information derived is an adaptive uni-

gram. A rough estimate is provided by the relative

word frequencies within the cache. More elaborate

approaches use trigger e�ects to increase the proba-

bilities of words that are semantically related to the

cached text [8, 5]. Additionally, the probabilities of

the few cached bi{ or trigrams may be increased.

A crucial question is how to combine the local esti-

mates and the prior knowledge of an n{gram, which

was trained on a large background corpus. A sophis-

ticated model uses Maximum Entropy to integrate

trigger e�ects into the background model. This ap-

proach, however, requires enormous training times

[8]. The most widespread type of cache models just

linearly interpolates between a static n{gram and the

locally estimated unigram. Unfortunately, this leads
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to amajor disadvantage: The probabilities for cached

words are uniformly increased without respect to the

history. This e�ect partly destroys the discriminating

power of a well{trained conditional model.

In this paper we describe and evaluate a new

method to quickly modify a given static n-gram such

that the local unigram properties are correctly mod-

elled without destroying the full history dependence

of the original n-gram.

2 Using Dynamic Marginals

To overcome the above mentioned disadvantages we

propose to use the cache information in a di�erent

way. Instead of linearly interpolating between the

background n{gram pback(w jh) and the locally es-

timated (smoothed) unigram padap(w) we treat the

latter as a dynamic marginal restricting the allowed

adaptive n{grams:

X
h

padap(h) � padap(w jh)
!
= padap(w) (1)

for all w in the vocabulary. Here, h denotes any his-

tory of length (n� 1). For the moment, padap(h) and

padap(w) are assumed to be already estimated. Fol-

lowing the idea ofMinimum Discriminant Estimation

[4], we are now looking for that n{gram padap(w jh)
which, while satisfying (1), is closest to the well{

trained model pback(w jh) in terms of relative entropy

D (also called Kullback{Leibler distance, discrimi-

nant information, etc. [2] ). More precisely, we de�ne

the adaptive n{gram model as follows:

padap(� j �) = (2)

argmin

p(� j �)

X
h

padap(h) �D
�
p(� jh) k pback(� jh)

�

Here, the minimum is taken over all normalized dis-

tributions p(� j �) satisfying the constraints (1). The
weighted average of relative entropies to be minimized

re
ects the fact that the importance of p(� jh) in-
creases with the likelihood of h during recognition.

Usual calculus techniques for restricted optimiza-

tion reveal a simple structure of the adaptive n{grams

[2, Sec.11.1]:

padap(w jh) =
�(w) � pback(w jh)P
v
�(v) � pback(v jh)

(3)



Here, the parameters �(w) must be adjusted such

that the given constraints are respected.

We want to stress that the derived model structure

retains most of the di�erentiating structure of the

background n{gram, since the well{trained history

dependence remains an integral part of the adaptive

model.

It might interest the reader that we could have

started with the model structure given in (3). Then,

minimizing the perplexity of some adaptation mate-

rial would have yielded the set of equations (1) as

extremum conditions. In that case, padap(h) and

padap(w) would be the history and the unigram dis-

tributions within the adaptation material.

3 Calculating the Parameters

3.1 Iterative Scaling

Given the model structure (3) and the constraints

(1) we now proceed to determine the adaptive pa-

rameters �(w). Since there is no closed solution to

the resulting nonlinear equations we will make use

of the well{established Generalized Iterative Scaling{

algorithm (GIS) of Darroch and Ratcli� [3]. In order

to use their approach we �rst reformulate the con-

straints (1):

X
h;v

padap(h) � padap(v jh) � fv(h;w) = padap(w) (4)

using the following unigram feature functions:

fv(h;w) = �v;w (5)

After a uniform scaling of all the features by a fac-

tor � (0 < � � 1) we obtain the following iterative

procedure to calculate the wanted parameters �:

�(0)
(w) = 1 (6)

�(k+1)
(w) =

�
padap(w)P

h
padap(h) � p(k)(w jh)

��
� �(k)

(w)

Here, the conditional probabilities p(k)(w jh) are cal-
culated as in (3) but based on the intermediate pa-

rameters �(k)
. As k ! 1 the �(k)

converge to the

solution of (1).

Please note, that a scaling of the features is absent

in most applications of the GIS to language models

known from the literature. The \standard" version

of GIS corresponds to � = 1.

3.2 Fast Approximations

As we are interested in a fast algorithm which allows

for frequent online adaptations we proceed to further

simplify the above outlined method. As a �rst step to

minimize the computational e�orts we will stop after

the �rst GIS iteration, whence we have:

�(w) � �(1)
(w) =

�
padap(w)P

h
padap(h) � pback(w jh)

��
(7)

Up to now we have not discussed how the adaptive

history distribution padap(h) is determined. Since a

sound estimation would require much more data than

is usually available for adaptation we decided to take

the background distribution pback(h) as an approxi-

mate substitute. As an additional bene�t we avoid

the expensive calculation of the denominator in (7):

�(w) �

�
padap(w)

pback(w)

��
(8)

Using this approximation the complete model now

reads as follows:

padap(w jh) =
�(w)

z(h)
� pback(w jh) (9)

with

z(h) =
X
w

�(w) � pback(w jh) (10)

3.3 Accelerated Normalization

Let us suppose that the background model has a

backing{o� structure. Here, di�erent probability es-

timates pback(w jh) are used for the set T of all n{

grams (h;w) that have been observed in the back-

ground data and for the set of unseen n{grams. The

second case is generalized to the less speci�c transi-

tion ĥ! w with a shortened history ĥ.

In this case a further reduction of computational

complexity can be achieved by introducing an addi-

tional constraint for each history h. Instead of only

requiring the distribution padap(� jh) to be normal-

ized we further constrain it to leave the total proba-

bility of observed transitions unchanged:

X
w:(h;w)2T

padap(w jh)
!
=

X
w:(h;w)2T

pback(w jh) (11)

These additional constraints motivate the following

structure for an adaptive model:

�(w)

z0(h)
� pback(w jh) if (h;w) 2 T

padap(w jh) =

8>>>>><
>>>>>: 1

z1(h)
� padap(w j ĥ) else (12)

with the following partial normalization factors z0(h)

and z1(h):

z0(h) =

X
w:(h;w)2T

�(w) � pback(w jh)

X
w:(h;w)2T

pback(w jh)
(13)

and

z1(h) =

1�
X

w:(h;w)2T

padap(w j ĥ)

1�
X

w:(h;w)2T

pback(w jh)
(14)



This results in a considerable speed{up as compared

to (10) since the sums are no longer taken over the

full vocabulary but are now restricted to the compar-

atively few words following the respective history h

in the background corpus.

4 Experiments

Various tests have been performed on the Spoke 2

adaptation task of the 1994 ARPA evaluation [6]

which provided two sets of domain speci�c newspa-

per articles, one about Jackie Kennedy and one about

Korea, henceforth denoted Kennedy andKorea. Both

data sets are devided into an adaptation and a test

set, each containing approximately 12000 words. The

background models pback(w) and pback(w jh) were

trained on the ARPA North American Business News

(NAB) corpus comprising 240 million words of news-

paper texts. All tests used a 64k vocabulary. To

evaluate the adaptive models we calculated the test

set perplexities (PP) and determined word error rates

(WER) using acoustic material which was available

for about 2000 words from each of the test sets.

4.1 Domain Adaptation

We now investigate the power of the new adapta-

tion technique and compare it to other known meth-

ods. Here, the task is to derive one �xed adapted

model padap(w jh), given the well{trained n{gram

pback(w jh) and an adaptation set. Our marginal

distributions padap(w) were estimated on the respec-

tive adaptation material using a standard backing{o�

scheme for unseen events.

First of all, various values of � were tested to reduce

both perplexity (Fig. 1) and word error rate (Fig. 2).

The perplexity has a clear minimum around � = 0:5

whereas the WER is not as simple to interprete, since

the error counts show irregular 
uctuations as � is

varied. Considering both test cases, a value of � � 0:5

appears to be a suitable choice. The presented �gures

were calculated for bigram models, but trigrams lead

to similar conclusions (see also Table 1 and 2).

Next, we investigated the in
uence of the type of

normalization used in (9) and (12). The perplexity

and WER reductions shown in Table 1 reveal that

both methods perform almost identically. All other

tests in this paper were thus done using the much

faster version (12). Fill{up is a di�erent method for

domain adaptation [1]. On Kennedy , �ll{up is not as

good as our method with the recommended � = 0:5,

but on Korea there are no signi�cant di�erences. Fi-

nally, a bigram trained on the rather limited adapta-

tion data is obviously not a competitive adaptation

technique, since it is even worse than the background

model. For the trigram, we obtain a signi�cant WER

reduction on Kennedy (10% relative) and a degra-

dation (5% relative) on Korea, see Table 2. (Per-

plexities are reduced for both domains.) The overall

performance for � = 0:5 is very encouraging.
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Figure 1: Perplexity versus �. Note that � = 0 corre-

sponds to the non adapted background model. � = 1

represents the GIS \standard" version.
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Figure 2: Word error rate versus �.

Kennedy Korea
Bigrams

PP WER PP WER

Background model 416 30.0% 257 23.9%

� = 0:5 305 27.8% 199 23.5%
(9)

� = 1:0 389 29.1% 259 24.2%

� = 0:5 308 28.0% 199 23.1%
(12)

� = 1:0 381 29.0% 253 24.0%

Fill{up 373 29.3% 229 23.4%

Bigram on adap. 894 38.3% 623 31.8%

Table 1: Domain adaptation of bigram models.

Kennedy Korea
Trigrams

PP WER PP WER

Background model 266 28.6% 164 19.8%

� = 0:5 214 25.8% 134 20.7%
(12)

� = 1:0 281 26.6% 176 21.0%

Table 2: Domain adaptation of trigram models.



4.2 Online Adaptation

In a second experimental setup we ignored the adap-

tation sets. Instead, we tested the use of our method

for online adaptation to a previously unknown do-

main. Here, the marginals padap(w) were estimated

as a linear combination of the dynamically updated

word frequencies within the local cache, pcache(w),

and the background unigram, pback(w):

padap(w) = � � pcache(w) + (1� �) � pback(w) (15)

The cache itself was updated after every sentence. (In

supervised adaptation the recognized sentences are

corrected before the updates. Unsupervised adapta-

tion uses the \raw" recognition results.) The inter-

polation parameter � can be adjusted to minimize

the padap(w) unigram perplexity of any sample cor-

pus. If we do not know anything about the domain

to be recognized we may estimate � using the broad

mixture of NAB texts. This yields � = 0:2. If in-

stead we take the NAB{untypical adaptation texts

for Kennedy and Korea as prior knowledge the esti-

mate shifts to � = 0:5.

For comparison we also evaluated a standard cache

model:

padap(w jh) = ��pcache(w)+(1��)�pback(w jh) (16)

Our results are summarized in Table 3 and 4.

We always observe reductions in perplexity, but only

small changes in the WER for supervised adaptation

and even an increase in WER for unsupervised adap-

tation. Again, Kennedy seems to be more sensitive

to adaptation than Korea.

WER
Kennedy PP

sup. unsup.

Background model 416 30.0%

Standard cache model 336 30.5% 31.3%

� = 0:5 334 28.8% 29.6%
� = 0:2

� = 1:0 298 29.0% 29.9%

� = 0:5 314 28.6% 30.0%
� = 0:5

� = 1:0 296 29.4% 31.5%

Table 3: Bigram perplexities and WER for supervised

and unsupervised online adaptation.

WER
Korea PP

sup. unsup.

Background model 257 23.9%

Standard cache model 219 23.6% 23.9%

� = 0:5 211 23.8% 24.4%
� = 0:2

� = 1:0 188 23.9% 24.5%

� = 0:5 197 23.9% 24.6%
� = 0:5

� = 1:0 188 23.7% 24.5%

Table 4: Like Table 3 but for the domain Korea

5 Conclusion

In this paper we proposed a new method to quickly

modify a given language model in order to adapt to

a special topic or speaker. Contrary to a linear in-

terpolation between the static conditional model and

the dynamically estimated unigramwe minimally dis-

tort the former such that it respects the marginal

distribution given by the local unigram. For domain

adaptation we can achieve improvements both in per-

plexity and in word error rate. For online adaptation

the changes are not very signi�cant. Future experi-

ments will include semantic word classes to improve

the quick and robust estimation of the adaptive uni-

grams.
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