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ABSTRACT

In this paper we investigate a number of ensemble meth-
ods for improving the performance of connectionist acous-
tic models for large vocabulary continuous speech recog-
nition. We discuss boosting, a data selection technique
which results in an ensemble of models, and mixtures-of-
experts. These techniques have been applied to multi-
layer perceptron acoustic models used to build a hy-
brid connectionist-HMM speech recognition system. We
present results on a number of ARPA benchmark tasks,
and show that the ensemble methods lead to considerable
improvements in recognition accuracy.

1. INTRODUCTION

When developing a classi�cation or prediction system it
is common practice to train a number of di�erent models,
and to retain the model which exhibits the best perfor-
mance on a cross-validation data set. However, reports in
the statistics and neural network literature suggest that
improved performance can be achieved by combining the
estimates of all the available models [1, 2, 3, 4]. Systems
that form their estimate from the estimates of a number
of di�erent models are termed ensembles or committee

machines. Ensembles of connectionist models have been
applied to tasks ranging from optical character recogni-
tion [5] to analysis of satellite images [6], and have been
shown to provide improvements in out-of-sample accu-
racy.

It has been shown that for best results the individ-
ual models which comprise an ensemble should not only
demonstrate as low an error rate as possible, but should
also make their errors in di�erent regions of the input
space [9, 10]. A simple method for building an ensemble
is bagging [11] in which the training data is uniformly
sampled with replacement to produce di�erent training
sets for the ensemble models. The expectation is that be-
cause the models are trained on di�erent data sets they
will pick out di�erent properties present in the data, thus
improving the performance when their outputs are com-
bined.

This paper compares the performance of two types of
ensemble techniques when used for connectionist acoustic
modelling. The two techniques described are boosting [7]
and mixtures-of-experts [8]. Boosting and mixtures-of-
experts di�er from simple ensemble methods. In boost-
ing, each member of the ensemble is trained on patterns
that have been �ltered by previously trained members of
the ensemble. In mixtures, the members of the ensem-
ble, or experts, are trained on data that is stochastically
selected by a gate which additionally learns how to best
combine the outputs of the experts.

The boosting algorithm has been applied successfully
to speech recognition for a small isolated digit task [12],
and for large vocabulary recognition, in which a modi�ed
form of boosting was used to produce ensembles of recur-
rent neural networks [13]. In this paper we will describe

how we use a combination of boosting and mixtures to
improve recognition accuracy.

We �rst introduce boosting. This includes some back-
ground and a detailed description of the algorithm. The
mixtures-of-experts architecture and learning algorithm
is then described. The ensemble methods are used to pro-
duce multi-layer perceptron (MLP) models. These MLPs
are used for acoustic modelling in a large vocabulary, hy-
brid connectionist-HMM continuous speech recognition
system, and this is described in Section 4. We then
present results on a number of ARPA benchmark tasks
for both boosting, and a combination of boosting and
mixtures-of-experts.

2. BOOSTING

Boosting is an algorithm that, under certain conditions,
allows one to improve the performance of any learning
machine, and was �rst designed in the context of the dis-
tribution free, or probably approximately correct (PAC)
model of learning [14]. In the distribution free model
(also known as the strong learning model), the learner
must be able to produce a hypothesis with an error of
at most �, for arbitrarily small values of �. Because the
learner is receiving random examples there is also the
possibility that the learner will receive an outlier (an
example that is highly unrepresentative). The strong
learning model therefore only requires that the learner
succeeds in �nding a good approximation to the target
function with probability at least 1 � �, where � is an
arbitrarily small constant.

In a variation of the distribution free model, called
the weak learning model, the requirement that the learner
must produce hypotheses with an error rate at most � is
relaxed. The leaner is required to produce hypotheses
with error rate slightly less than 0:5. Thus the weak
learning model requires that the learner be able to pro-
duce hypotheses that perform only slightly better that
random guessing.

The main result of [14] is a proof that the strong and
weak learning models are actually equivalent. A provably
correct technique is given for converting any learning al-
gorithm that performs only slightly better than random
guessing into one that produces hypotheses with arbitrar-
ily small error rates. The technique creates an ensemble
hypothesis from three sub-hypotheses each trained on dif-
ferent distributions. Applying the technique recursively
allows the error rate to be made arbitrarily small. In
practice this is impossible because the algorithm quickly
runs out of training data.

The boosting procedure used here is as follows: train
a network on a randomly chosen subset of the available
training data. This network is then used to �lter the
remaining training data to produce a training set for a
second network. Flip a fair coin. If heads, examples are
passed through the �rst network until it misclassi�es a
pattern, and this pattern is added to the second train-



ing set. If tails, examples are passed through the �rst
network until it correctly classi�es a pattern, and this
pattern is then added to the second training set. This
process is continued until enough patterns have been col-
lected to train the second network. The coin ipping
ensures that if the training set for the second network
were passed through the �rst network it would have an
error rate of 50%. After training the second network, the
�rst and second networks are used to produce a train-
ing set for a third network in the following manner. The
remaining training data is passed through the �rst two
networks. If these two networks disagree on the classi�-
cation of a pattern, this pattern is added to the training
set for the third network. If the �rst two networks agree,
the pattern is discarded. This process is continued until
enough patterns have been collected to train the third
network. The boosted networks are then combined using
a simple linear merge, in which the ensemble output is
formed by taking the average of the member network's
outputs.

3. MIXTURES-OF-EXPERTS

The mixture of experts [8] is a di�erent type of ensem-
ble. The ensemble members or experts are trained with
data which is stochastically selected by a gate. The gate
in turn learns how to best combine the experts given the
data. The training of the experts, which are typically sin-
gle or multi-layer networks, proceeds as for standard net-
works, with an additional weighting of the output error
terms by the posterior probability of selecting an expert
given the current data point. In the case of classi�cation,
considered here, the experts use softmax output units.
The gate, which is typically a single or multi-layered net-
work with softmax output units is trained using the pos-
terior probabilities as targets. The overall output of the
mixture of experts is given by the weighted combination
of the gate and expert outputs.

The mixture of experts is based on the principle of
divide and conquer, in which a relatively hard problem
is broken up into a series of easier to solve problems. By
using the posterior probabilities to weight the experts
and provide targets for the gate, we allow the e�ective
data sets used to train each expert to overlap. This tech-
nique has already proved useful in speech recognition us-
ing mixtures-of-recurrent-networks [16]. In this paper we
consider the use of mixtures of MLPs for acoustic mod-
elling.

4. SYSTEM DESCRIPTION

The ensemble algorithms described in Sections 2 and 3
were used to produce an ensemble of MLP acoustic mod-
els. The MLP ensemble formed the acoustic model of
the Cambridge University Engineering Department con-
nectionist speech recognition system, abbot. In this sys-
tem, the acoustic model is used to map each frame of
acoustic data to a set of posterior phone probabilities.
A Viterbi based training procedure is used to train the
acoustic model. In this procedure, each frame of training
data is assigned a phone label based on an utterance or-
thography and the current model. The back-propagation
algorithm [17] is then used to train the MLP to map
the acoustic input vector sequence to the phone label se-
quence. When this training has converged, the labels are
reassigned using the Viterbi algorithm and the process
iterated.

The posterior phone probabilities estimated by the
acoustic model are used as estimates of the observation
probabilities in an HMM framework. Given new acoustic
data and the connectionist-HMM framework, the maxi-
mum a posteriori word sequence is extracted using the
noway decoder. Noway is a single pass, start synchronous
stack decoder designed to exploit the features of the hy-
brid connectionist-HMM approach [18]. A more complete
description of the system can be found in [19].
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Figure 1: The abbot hybrid connectionist-HMM speech
recognition system with an MLP ensemble acoustic
model

The acoustic representation used is twelfth order per-
ceptual linear prediction cepstral coe�cients [20] plus en-
ergy. To capture dynamic information the acoustic fea-
tures are augmented with �rst order di�erence parame-
ters. The combination of acoustic features and di�erence
parameters forms a frame. An input window of nine con-
tiguous frames is used to capture contextual information,
with the central frame of the window given by the cur-
rent observation. The hidden units of the network use a
logistic activation functions, while the output units use
a softmax activation function. The cross-entropy error
criterion is used during training.

5. EXPERIMENTS AND RESULTS

This section describes the experiments and presents re-
sults. The data used for both training and testing is �rst
described. The results of experiments to evaluate boost-
ing are then presented. We then asses the performance of
a mixtures-of-experts architecture which is bootstrapped
from a boosting ensemble.

The training data used for the experiments is the
short term speakers from the Wall Street Journal corpus.
This consists of approximately 36,400 sentences from 284
di�erent speakers (SI284). The ensemble methods have
been evaluated on a number of di�erent ARPA bench-
mark tasks. A brief description of these tasks is given
below.

dt s5 93

November 1993 Spoke 5 development test set. This



is a 5000 word, closed vocabulary test. The system
uses the standard ARPA bigram language model.
The results reported here are for the close-talking
Sennheiser microphone only.

dt s6 93

November 1993 Spoke 6 development test set. This
is also a 5000 word, closed vocabulary test, and the
system uses the standard ARPA bigram language
model.

et h2 93

November 1993 Hub 2 evaluation test set. Also
a 5000 word closed vocabulary task. The system
uses the standard ARPA trigram language model.

et h1 93

November 1993 Hub 1 evaluation test set. This is
a large vocabulary task, the prompting texts for
which are from the Wall Street Journal 64k word
texts pools. The system uses a 20k-word vocabu-
lary, and a trigram language model built using 35
million words of text from the WSJ0 corpus.

et h1 94

November 1994 Hub 1 evaluation test set. This is
an open-vocabulary task, which includes prompts
from various newspaper sources, including theWall
Street Journal, the Los Angeles Times, the Wash-
ington Post, and the New York Times. The system
uses a 64k-word vocabulary and a language model
built using 237 million words from the CSR-LM-1
corpus [21].

5.1. Boosting Evaluation

The boosting algorithm described in Section 2 has been
used to produce an ensemble of MLP acoustic models.
The �rst network is trained on 1.5 million frames ran-
domly selected from the available training data (approx-
imately 15 million frames). This is then used to �lter
the unseen training data to select frames for training the
second network. The �rst and second networks are then
used to select data for the third network as described in
Section 2.

The distribution of phone classes in the training data
for an acoustic model should be representative of the dis-
tribution of phone classes in the test data. This ensures
that the network produces accurate posterior probabil-
ity estimates. The data selection process alters the prior
distribution of phone classes in the training data. There-
fore the network estimates must be modi�ed to account
for the altered priors. This can be achieved using Bayes'
theorem:

P
0

(q
i

tjut) =
P(qitjut)Ptest(q

i)

Ptrain(qi)
; (1)

where P(qitjut) is the estimated posterior probability of
phone class i at time t, Ptrain(q

i) is the prior for phone
class i in the training data, and Ptest(q

i) is the prior
for phone class i in the test data. Of course Ptest(q

i) is
dependent on the test set, and is not known. Ptest(q

i)
is therefore estimated form the entire SI284 training set.
P0(qitjut) is then normalised to ensure that it is a proper
distribution.

The boosted acoustic models have been combined us-
ing two di�erent methods. In the �rst of these, the en-
semble output is formed as follows: if networks one and
two classify the input frame as the same phone, the out-
put of network one is used as the observation probabil-
ities in the HMM as described in Section 4. If the net-
works disagree on the classi�cation of the input frame,

the output of network three is used as the observation
probabilities. This method is denoted vote. The sec-
ond method, denoted average, forms a simple average
of the network outputs, and this average is used as the
observation probabilities.

Model WER WER Redn:

Single MLP 16.0% |
Boosted (vote) 14.6% 8.75%
Boosted (average) 12.9% 19.38%

Table 1: Performance of boosted MLP acoustic models
on the 1993 Hub 2 evaluation test set.

Table 1 shows results on the November 1993 Hub 2
evaluation test set. As can be seen boosting has con-
siderably reduced the word error rate when compared to
a single MLP acoustic model. The word error rate re-
ductions are statistically signi�cant at p= 0:05, using a
two-tailed t-test with the null hypothesis that there is
no performance di�erence between the single MLP and
the boosting methods. The ensemble which uses the lin-
ear average to combine the models is also signi�cantly
better that the voting scheme at p=0:05. All the signi�-
cance tests were performed using the NIST package score
v3:6:2, and the matched pair sentence segment (word er-
ror) test1.

Test Word Error Rate WER
Set Single MLP Boosting Redn:

dt s5 93 20.4% 16.5% 19.1%
dt s6 93 17.7% 14.8% 16.4%
et h1 93 25.2% 21.8% 13.5%
et h1 94 24.7% 20.7% 16.2%

Table 2: Evaluation of the performance of boosting MLP
acoustic models.

The performance of the boosted MLP ensemble and
the linear average combination scheme has also been eval-
uated on a number of ARPA benchmark tests. The re-
sults are summarised in Table 5.1. As can be seen, boost-
ing has resulted in considerable improvements in perfor-
mance for all of the test sets. In each case the system
with boosted ensemble acoustic models performs signi�-
cantly (at p=0.05) better than the system which uses a
single MLP acoustic model.

5.2. Combining Boosting and Mixtures-of-Experts

In order to improve the performance of the ensembles
further, three methods were investigated. Each of these
focussed on the use of mixtures-of-experts to combine the
ensemble members.

In the �rst experiment, the boosted models were com-
bined using a gating network which was retrained on the
training data, with the boosted models held �xed. Two
methods of training the gate were investigated: using
winner take all (WTA) in which the best performing en-
semble is assigned probability 1:0 and the rest 0:0, and a
soft assignment scheme [8]. It was found, however that
neither method o�ered an advantage over a simple linear
combination (results not shown). The reason for this may
be that the set of combination rules to be learnt by the

1
The NIST testing software is available via anonymous ftp

from ftp://jaguar.ncsl.nist.gov/pub/score 3.6.2.tar.Z.



gate is too complex, or that the assumption of veridical
responsibilities [22] is violated in the ensemble members.

The �nal pair of experiments compared two tech-
niques, training a mixture of experts from a at start on
the entire training data (denoted Mixed in Table 5.1) and
using the boosted models as a bootstrap for a mixture-
of-experts (denoted Boost+Mixed in Table 5.1) and re-
training on the entire training data. As can be seen from
the table, the performance of the mixtures trained from
a at start (Mixed) was comparable with the Boosting
method. However, the Boost+Mixed method gave an ad-
ditional improvement over the Boosting, which was sig-
ni�cant at the p=0:05 level. The reason for the failure
of the at start mixtures is unclear. However, it is clear
that the use of an appropriate bootstrap, such as the
boosted ensemble is important in obtaining well trained
models for the mixtures. This result is consistent with
the concept of using k-means as a bootstrap for Gaussian
mixtures trained with EM.

Test Word Error Rate
Set Boosting Mixed Boost+Mixed

dt s5 93 16.5% 17.3% 14.2%
dt s6 93 14.8% 14.5% 11.5%
et h2 93 12.9% 13.1% 10.9%
et h1 94 20.7% 20.5% 16.7%

Table 3: Evaluation of the performance of mixture-of-
experts acoustic models

6. SUMMARY

This paper has described two ensemble methods, boost-
ing, and mixture-of-experts. These methods have been
used to produce connectionist acoustic models, and have
been shown to improve recognition performance by up to
35%.
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