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ABSTRACT

The results of our research presented in this paper
are two-fold. First, an estimation of global posteriors
is formalized in the framework of hybrid HMM/ANN
systems. It is shown that hybrid HMM/ANN sys-
tems, in which the ANN part estimates local posteri-
ors, can be used to modelize global model posteriors.
This formalization provides us with a clear theory in
which both REMAP and \classical" Viterbi trained
hybrid systems are uni�ed. Second, a new forward-
backward training of hybrid HMM/ANN systems is
derived from the previous formulation. Comparisons
of performance between Viterbi and forward- back-
ward hybrid systems are presented and discussed.

1. INTRODUCTION

In [1, 2] it was shown that it is possible to express the
global posterior probability P (M jX;�) of a model
(stochastic �nite state acceptor)M given the acoustic
data X and the parameters � in terms of the local
posteriors (conditional transition probabilities)
P (qnl jq

n�1
k ; xn;�) (where q

n
k denotes the speci�c state

qk of M at time n) and the language model pri-
ors. An application of the generalized EM algo-
rithm applied to stochastic �nite acceptors, known
as REMAP, was introduced to iteratively estimate
the parameter set �. The global posterior probabil-
ity of the correct model can be optimized by opti-
mizing the local posterior probabilities through re-
estimating targets for the ANN probability estima-
tor.

In this paper: (1) we demonstrate that the orig-
inal HMM/ANN system [3, 4] trained using local
criteria indeed optimizes the global posterior prob-
ability, given certain well-de�ned assumptions; (2)
we use the REMAP algorithm to derive a forward-
backward training algorithm for the original
HMM/ANN system; (3) we demonstrate the perfor-
mance of these algorithms on the task-independent
Phonebook database.

2. ESTIMATION OF GLOBAL

POSTERIORS

2.1. REMAP formulation

The objective of the REMAP formulation is to pro-
duce an estimate of the global posterior probability
of a model M given the acoustic data X = XN

1 =
fx1; x2; : : : ; xNg (and the parameter set �):

P (M jX) =

LX
`1=1

: : :

LX
`N=1

P (q1`1 ; : : : ; q
N
`N
;M jX) (1)

where qn`n is HMM state `n visited at time n, and the
summation is over all possible state sequences (the
Viterbi approximation maximizes over the best state
sequences).

If we consider a particular state sequence, the
posterior probability of the state sequence and the
model may be decomposed into the product of an
acoustic model and a prior over models (\language
model" and state sequences):

P (q1`1 ; : : : ; q
N
`N
;M jX)

= P (q1`1 ; : : : ; q
N
`N
jX)P (M jX; q1`1 ; : : : ; q

N
`N
)

' P (q1`1 ; : : : ; q
N
`N
jX)| {z }

ac:model

P (M jq1`1 ; : : : ; q
N
`N
)| {z }

prior

(2)

The X dependence in the second factor in (2) is
dropped since the hidden part (the state sequence) is
hypothesized. With the usual assumptions of a �rst-
order Markov process and conditionals on X limited
to local contextXn+c

n�c we can simplify the two factors
in (2):

P (q1`1 ; : : : ; q
N
`N
jX) = P (q1`1 jX)P (q2`2 jX; q

1
`1
) : : :

: : : P (qN`N jX; q
1
`1
; : : : ; qN�1

`N�1
)

=

NY
n=1

P (qn`n jX;Q
n�1
1 )



'

NY
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P (qn`n jX
n+d
n�c ; q
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`n�1

) (3)
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N
`N
)
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jMi)P (Mi)
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Using these simpli�cations we can approximate (1):

P (M jX) ' P (M)
X

`1;:::;`N"
NY
n=1

P (qn`n jX
n+d
n�c ; q

n�1
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)
P (qn`n jq

n�1
`n�1

;M)

P (qn`n jq
n�1
`n�1

)

#
(5)

and the Viterbi approximation may be obtained by
replacing the sum over state sequences (`1; : : : ; `N )
with a maximization. This formulation has two sets
of prior probabilities where P (qn` jq

n�1
k ) represent the

training data priors and P (qn` jq
n�1
k ;M) the Markov

model priors. The training data priors are indepen-
dent of the HMM topology. The Markov model pri-
ors are actually the so-called transition probabilities
between states. Assuming time-invariant HMMs (as
usually done in standard HMMs), these priors can
be written as P (q`jqk) and P (q`jqk;M).

The REMAP [1] training algorithm uses local
conditional transition probabilities P (qnk jX; q

n
l � 1)

(estimated by a particular form of MLP) to maximize
during training (or estimate during recognition) the
global posterior probability of the word sequences.

2.2. Original HMM/ANN system

The above formulation was derived in the context of
stochastic �nite state acceptor models (also known
as discriminative HMMs). However, by removing the
dependency on the previous state in (5) we arrive at a
hybrid system similar to those previously developed,
(e.g., in [3] and [4]). In this case, (5) becomes:

P (M jX) '
X

`1;:::;`N

"
NY
n=1

P (q
n
`n jX

n+d
n�c )

P (qn`n jM)

P (qn`n)

#
P (M)

(6)

which gives a clear justi�cation for dividing the local
posterior estimate by the training data priors to ar-
rive at the scaled likelihoods that are used in the de-
coding. This demonstrates that given the previously
stated assumptions the initial hybrid HMM/ANN
systems do produce an estimate of the global pos-
terior P (M jX). This is not entirely straightforward,
since although we use scaled likelihoods of the form
P (qn`n jX

n+d
n�c )=P (q

n
`n
) as in (6), the �rst-order Markov

model prior P (qn`n jq
n�1
`n�1

;M) in (5) is used in favour

of the zeroth-order Markov model prior P (qnln jM) in
(6). Equations (5) and (6) also provide us with a
clear way of properly including language model infor-
mation [P (M)] into the formalism (as part of other
local prior information).

2.3. Discussion

The development above is based on the local pos-
terior probabilities P (qn`n jX

n+d
n�c ). If the local likeli-

hoods are used (as in usual in HMMs) the following
expression can be written (with exactly the same as-
sumptions) :

P (M jX) ' P (M)
X

`1;:::;`N"
NY
n=1

P (Xn+d
n�c jq

n
`n
)
P (qn`n jq
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#
(7)

Using Bayes rule, we can show that expression
(6) and (7) are then similar :

P (Xn+d
n�c jq

n
`n
)

P (Xn+d
n�c )

=
P (qn`n jX

n+d
n�c )

P (qn`n)
(8)

The di�erence between the hybrid and the likeli-
hood approaches lies at the local level. The hybrid
system estimates local posteriors and is then discrim-
inant at the frame level. The likelihood system esti-
mates local probability density functions. Both sys-
tems can give us an estimate of the global posterior.
Classically, the denominator P (X) in (7) is dropped
from the equations because it is constant at recogni-
tion time.

3. FORWARD-BACKWARD

ESTIMATION

In the hybrid systems previously developed (e.g. [3]
and [4]), we used Viterbi training in which the sum-
mation over state sequences in (5) or (6) is replaced
by a maximization over state sequences. However, we
can now derive a forward-backward algorithm for hy-
brid HMM/ANN training without using the Viterbi
approximation. This is an application of the Gen-
eralized EM algorithm, where the missing data is
the state sequence (as usual in HMM estimation),
the E-step is the estimation of ANN targets using a
forward-backward recurrence and the M-step is the
MLP training. This is a generalized EM algorithm
since the M-step is not exact.



3.1. Recurrences

We can write down forward (�) and backward (�)
recurrences:

�n(`) =
p(Xn

1 ; q
n
` jM)

p(Xn
1 )

(9)

=

"X
k

�n�1(k)p(q`jqk)

#
p(xnjq`)
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n+1jq
n
` ; X
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(10)

=
X
k

�n+1(k)P (qk jq`)
p(xn+1jqk)

p(xn+1)

which are similar to the standard recurrences used
in HMMs, apart from the scaling factor p(xn). This
scaling factor is necessary:

1. To have the � (or �) recursion estimating
p(XjM)

p(X)
= P (MjX)

P (M)
.

2. To have the � and � recurrences expressed in

terms of p(xnjqk)

p(xn)
= P (qkjxn)

P (qk)
, which is the only

value that can be estimated by the ANN (pro-
vided that we can get an estimate of P (qk) {
see below).

Assuming that we can estimate state priors in the
full forward-backward framework, the ANN targets
may then be re-estimated using the following:

P (qnk jX;M) = n(k) =
p(qnk ; X jM)

p(X jM)
(11)

=
�n(k)�n(k)P
` �n(`)�n(`)

As for REMAP, convergence can be proved. This
approach has been previously employed for speech
recognition in [6] and for handwriting recognition
in [5]. However in the last case an explicit Viterbi
segmentation was assumed when estimating the pri-
ors P (qk) required by (6).

3.2. Priors and durations

As a generalization of what has been done with Viterbi-
based hybrid HMM/ANN systems, priors P (qk) can
be estimated as:

P (qk) =

PN

n=1 P (q
n
k jX;M)

N
=

PN

n=1 n(k)

N
(12)

which allows us to compute forward and backward
recurrences and to iterate the training process.

At recognition time, a duration modelling is usu-
ally used in order to enhance the performance of the
system. Such a duration model needs the estima-
tion of duration histograms which is straightforward

in case of Viterbi. In the forward-backward context,
we can de�ne the state duration in a particular ut-
terance !i as :

d!i(qk) =

NX
n=1

n(k) (13)

At the contrary of Viterbi, forward-backward dura-
tions can take non-integer values.

3.3. Discussion

The Viterbi procedure considers the best state se-
quence sequence through the HMM, which means
that we take a hard decision about which state qk
is visited at time n. In other words, we can express
n(k) in (11) while working with Viterbi, simply set-
ting n(k) = 1 if state qk is visited at time n and
setting n(k) = 0 if the state is not visited. The
forward-backward procedure can then be seen as a
smoother version of the Viterbi procedure, since we
have \soft" decision regarding which state qk is vis-
ited at time n. We usually talk about hard segmen-

tation when working with Viterbi and soft segmen-

tation when working with forward-backward.
Taking smooth decision at the frame level makes

more sense, especially at the boundaries between sta-
tionary parts of signal, and when the speech signal is
degraded. For this reason, we expect advantages of
using a forward-backward criterion when training in
di�cult conditions : few training data, noisy data,
strong coarticulation e�ects, bad or at initialization
of the parameter set . . .

4. EXPERIMENTS

We demonstrate the performance of these algorithms
on the task-independent Phonebook database [7].
Phonebook is a phonetically rich isolated word te-
lephone-speech database. It consists of more than
92,000 utterances and almost 8,000 di�erent words,
with an average of 11 talkers for each word. Each
speaker of a demographically-representative set of
over 1,300 native speakers of American English made
a single telephone call and read 75 words. The data-
base contains 106 lists of 75 words. Each list is re-
ferred by a 2 letter label (for example aa, ab, . . . ).
The speakers and words are di�erent for each list.

We de�ned two training sets for our experiments:

1. a small training set of 9,000 utterances and a
cross-validation set (used to adapt the MLP
training) of 2,000 utterances

2. a training set of 19,000 utterances (21 lists:
*a *h *m *q *t) and a cross-validation set of
7,000 utterances (8 lists: *o *y)



Recognition experiments were performed on a med-
ium size lexicon (600 words) test set of 6,500 utter-
rances (8 lists: *d *r). We used for acoustic fea-
tures 12 log-rasta PLP (+ delta-features + delta-
energy) [9].

The hybrid HMM/ANN system was based on 56
context independent phone HMMs. The CMU dic-
tionary has been used for the phonetic transcription.
We used a multilayer perceptron with 234 inputs (9
frames of input context) and 56 outputs (see [8] for
more details). For training set 1, a MLP of 600 hid-
den units has been used. For training set 2, a MLP
of 1000 hidden units has been used. A minimum du-
ration model equal to half of the average duration
for each phone has been derived and used in both
Viterbi and forward-backward cases.

In the table below, these preliminary results show
a clear advantage of forward-backward (F-B) train-
ing over Viterbi training for the small training set.
No signi�cant di�erence is observed in the case of
the larger training set. This result con�rms our ex-
pectation regarding the behaviour of the forward-
backward procedure when used with a small training
set.

Word error rate Training set 1 Training set 2
Viterbi 13.7% 9.8%
F-B 12.2% 10.1%

Table 1: Error rates on isolated word recognition
(600 lexicon words) with hybrid HMM/ANN sys-
tem and log-rasta plp features. Comparison between
Viterbi and full foward-backward training.

5. CONCLUSIONS

The theoretical perspective developed in this paper
provides us with a better, uni�ed, view of hybrid sto-
chastic HMM/ANN systems and their relationships
to standard HMMs and stochastic �nite state accep-
tor. It is shown that such systems, in which the
ANN part estimates local posteriors, can be used to
modelize global model posteriors.

This better formalisation inspired us to derive a
new forward-backward training dedicated to hybrid
systems. The training includes ANN target, priors
and duration estimation. Finally, comparisons of
performance between Viterbi and forward-backward
hybrid systems are presented and discussed.
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