
MATCHING TRAINING AND TESTING CRITERIA

IN HYBRID SPEECH RECOGNITION SYSTEMS

Xin Tu Yonghong Yan Ron Cole

E-mail: (xintu/yan/cole)@cse.ogi.edu
Center for Spoken Language Understanding, Oregon Graduate Institute

P.O. Box 91000, Portland, OR 97291-1000, USA

Abstract

Inconsistency between training and testing criteria is

a drawback of the hybrid arti�cial neural network

and hidden Markov model (ANN/HMM) approach

to speech recognition. This paper presents an e�ec-

tive method to address this problem by modifying

the feedforward neural network training paradigm.

Word errors are explicitly incorporated in the training

procedure to achieve improved word recognition ac-

curacy. Experiments on a continuous digit database

show a reduction in word error rate of more than 17%

using the proposed method.

1. Introduction

Hybrid ANN/HMM speech recognition systems have

been shown to be competitive with traditional HMM

systems because they integrate the advantages of hid-

den Markov models and arti�cial neural networks.

HMMs have been proven e�ective at modeling the

temporal structure of the speech signal, while ANNs

are suitable for static pattern classi�cation due to

their non-parametric nature and discriminative train-

ing scheme.

In our hybrid ANN/HMM speech recognition system,

an ANN classi�er is often used to estimate the poste-

rior probabilities of phoneme classes given input pat-

terns. A Markov chain is used to model the state

transition probabilities. Phoneme classes correspond

to states in the Markov chain, and the outputs of the

classi�er are used to approximate the state emission

probabilities.

Di�erent criteria are used during training and test-

ing. When training a neural network classi�er, tra-

ditionally, the optimization criterion for the classi�er

is the classi�cation accuracy of the phoneme classes.

However, the most often used criterion for testing a

recognition system is the word or sentence recogni-

tion accuracy. The inconsistency between the two

criteria raises the problem that optimizing phoneme

classi�cation during training does not necessarily lead

to an optimal word recognition accuracy. The incon-

sistency between training and testing criteria often

results in suboptimal solutions.

This problem has been studied recently. Bengio[1]

proposed a global optimization method in an at-

tempt to link the performance of frame level clas-

si�cation with the HMM phone models. Tebelskis[2]

approached this problem by creating an extra word

layer in a Multi-State Time Delay Neural Network

classi�er. In both cases, improved performance was

obtained over the baseline systems.

This paper presents a new method to incorporate

word errors into the training of a neural network clas-

si�er. The optimization criterion for the classi�er is

tuned toward minimizing the word recognition error

rate, which leads to a consistent optimization crite-

rion for training and testing. This method is used it-

eratively to construct a set of classi�ers. A boosting

technique is applied to combine these classi�ers. Ex-

periments on a continuous digit database show 17.8%

word error reduction.

2. Resolving Inconsistency: Word

Error Back propagation

2.1. System Description

The classi�er in our hybrid ANN/HMM speech recog-

nition system is a three-layer fully connected feed-

forward neural network (MLP). The output units

are states which are subphonemes. Subphonemes

are obtained by splitting a phoneme equally into a

number of segments (the exact number depends on

the phoneme) based on the phonetic transcriptions.

Hence, every frame is associated with a \desired"

output class which is a subphoneme. The MLP is

used to estimate the posterior probabilities of the sub-

phoneme units. During supervised training, for each

input pattern, the target for the \desired" class is set

to 1.0, and for the rest of the classes, the targets are

all set to 0.0.

The error signal at output j for input pattern n is



de�ned by

ej(n) = Oj(n)� Tj(n) (1)

where Oj is the output of node j , and Tj is the target

for node j . The instantaneous sum of squared error

of the network for pattern n is written as

E(n) =
1

2

X
j2C

e2j(n) (2)

where the set C includes all the output nodes of the

network. Let N denote the total number of input pat-

terns in the training set, the average squared error is

obtained by summing E(n) over all n and normalizing

with respect to the size N , as shown by

Eav =
1

N

NX
n=1

E(n) (3)

The average squared error represents the cost

function as the measure of the learning performance.

The learning process adjusts the weights in the MLP

so as to minimize the cost function.

In order to train the classi�er to minimize the word

error rate, word errors must be combined in the cost

function during the optimization process. Bahl[3] and

Lee[4] proposed a corrective training method to opti-

mize the parameters of HMM models to improve the

the recognition accuracy on the training data. The

parameters were modi�ed in such a way that the mis-

recognized word became less probable and the correct

word became more probable. We extend this concept

to optimize the neural network classi�er in a hybrid

speech system. Our goal is to improve the recognition

accuracy on both the training data and testing data

by standardizing the training and testing criteria.

There are two major di�culties in incorporating the

word error into the cost function. One is how to cal-

culate the word error. The other is how to map the

word error to the frame level phonetic outputs in our

neural network.

In an isolated word recognition task, word errors are

all substitutions. If a word w1 is misrecognized as

w2 , training can be tuned toward increasing the prob-

ability of w1 and decreasing the probability of w2 .

In a continuous recognition task, the boundaries of

the misrecognized word sequence will not always be

aligned with those of the correct word sequence due

to insertions and deletions. It is di�cult to measure

how \wrong" a word error is. However, we can use

a dynamic programming algorithm to �nd the under-

lying state sequences. For a sentence which is mis-

recognized in the training data set, a Viterbi search

can be used to �nd the misrecognized state sequence,

and forced alignment can be used to generate the cor-

rect state sequence. By comparing the two state se-

quences, we can �nd out where word errors occur.

Figure 1 shows an example in which an incorrect in-

sertion of \oU" takes place. For convenience, we plot

the output classes as monophones in this �gure. In

the real application, all classes are context-dependent

phonemes rather than monophones.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

/tc/

/th/

/u/

/oU/

Figure 1: Forced Alignment. The correct utterance is

\two"; the recognized utterance is \two oh".

In the example in Figure 1, the recognized state se-

quence (the dotted line) is di�erent from the forced

alignment (the solid line) for the last four frames

where the insertion occurs. The \distance" between

these two paths from frame 11 to 14 re
ects the word

error in this utterance. In order to minimize the \dis-

tance", the error signal needs to be adjusted such that

the probability of the phoneme /oU/ will be reduced

and the probability of the phoneme /u/ will be in-

creased. We rewrite equation (1) as

ej =

8<
:

Oj(n) � (1:0� �(n)) j = /oU/

Oj(n) � (0:0 + �(n)) j = /u/

Oj(n) � 0:0 otherwise

(4)

Thus, by introducing a positive variable �(n), the tar-

get for /oU/ is decreased, and the target for /u/ is

increased. The consequence of these changes is that

the learning of /oU/ is discouraged, while the learn-

ing of /u/ is enhanced.

The variable �(n) is a cost related to the word error.

We de�ne �(n) as:

�(n) = maxf0 ;O=oU=(n) �O=u=(n)g (5)

which is the di�erence between the probability of the

correct state and the incorrect state for a given input

pattern.

After adding �(n) in the calculation of the error sig-

nal, the discrimination between the correct and mis-

recognized classes is enhanced whenever a word er-



ror occurs. For utterances which are correctly recog-

nized, the calculation of the error signal remains the

same. Thus, the training criterion is consistent with

the testing criterion, since the classi�er is optimized

for the purpose of minimizing the word error rate.

However, training on errors is susceptible to over-

�tting the training data (poor generalization on test-

ing data). This side e�ect suggests that a boosting[5]

technique should be applied.

2.2. Boosting

Boosting is a general method to improve the per-

formance of a learning algorithm. Freund and

Schapire[6] proposed a boosting algorithm based on

adaptively resampling and combining. The basic idea

is to resample the training data based on the per-

formance of previous constructed classi�ers. The

method assumes that all patterns in the training set

have equal probabilities to be picked during the train-

ing of the �rst network, which is the case for most

classi�cation applications. Patterns in the training

data which fail to be correctly recognized by the �rst

classi�er will have a higher probability of being sam-

pled to train a new classi�er than those that do not.

The resampling process can be iteratively used, with

the construction of the (k + 1 )st classi�er depending

on the performance of the k previously constructed

classi�ers. Finally, the classi�ers are combined as a

single classi�er by weighted voting. This method was

claimed to be capable of improving the performance

on the training set as well as the testing set.

Instead of adaptively resampling the training data,

we used the same training patterns but adaptively

adjusted the error signal during the training of a new

classi�er. The adjustment criterion was the correct-

ness of the underlying words in an utterance.

Originally, boosting used weighted voting to combine

multiple classi�ers into a single classi�er. This works

for some static pattern classi�cation problems. Since

our classi�er outputs state probabilities, averaging is

more suitable to be used to combine the classi�ers[7].

In order to weight each classi�er equally, the outputs

from each classi�er are normalized before averaging

their scores.

3. Experiment and Results

3.1. Baseline system

We set up our experiment using the OGI digit

database, which is a subset of the OGI Num-

bers corpus[8] collected by the Center for Spoken

Language Understanding at OGI. The OGI digit

database is a speaker-independent, continuous digit

database. The vocabulary contains 11 digits: \zero,

one, two, three, four, �ve, six, seven, eight, nine, oh."

Each utterance contains 1 to 10 continuously spoken

digits from a telephone call. Calls are made from

all over the United States. The database is randomly

divided into three sets, with 2090 utterances for train-

ing, 512 for cross-validation, and 1899 for testing.

Due to the high computational complexity of neural

network training, we did not use all available frames

in the training set. For subphoneme classes with a

relatively smaller number of training frames, all avail-

able frames might well be used, while for more com-

mon classes, only a subset of available frames was

actually used for training. The frames were chosen in

such a way as to spread them out uniformly over the

whole training set.

Our neural network classi�er is a three-layer fully con-

nected feedforward MLP with 130 input nodes, 150

hidden nodes and 209 output nodes used for state

probability estimation. The 130 input data consist of

�ve contiguous frames of features. For each frame,

the features are 12th order MFCC coe�cients, their

delta features, energy and delta energy. The anal-

ysis window is 25 ms long, updated every 10 ms.

The MLP in our baseline system was trained with a

stochastic back-propagation algorithm, using a mean-

squared error (MSE) cost function.

3.2. Boosting two classi�ers

The baseline system was our �rst classi�er (classi-

�er1). It was used to generate state probabilities for

the training data. The probabilities were then used

in a Viterbi search to decode the underlying words for

each utterance. For an utterance which had word er-

rors, we ran forced alignment to get the correct state

sequence according to the phonetic pronunciations in

our digit dictionary. By comparing the Viterbi search

result and force aligned state sequence we located the

frames which were misaligned. The error signal was

then calculated according to equation (4) during the

training of a second classi�er (classi�er2). By averag-

ing the outputs of the two classi�ers, a new classi�er,

called boost1, was constructed. Results are shown in

Table 1.

3.3. Boosting three classi�ers

Once we had boost1, we used it to construct a third

classi�er (classi�er3) using the same method as de-

scribed above. By averaging the outputs of the three

classi�ers, we got a new classi�er which is called

boost2. Results using boost2 are shown in Table 2.

Both boost1 and boost2 show improved performance



Data Unit Baseline boost1

Training Set word 2.15 1.32

% sentence 7.46 4.69

Test Set word 5.21 4.44

% sentence 18.01 16.38

Table 1: Word and sentence error rates on the OGI num-

bers database using boost1.

Data Unit Baseline boost2

Training Set word 2.15 1.28

% sentence 7.46 4.45

Test Set word 5.21 4.28

% sentence 18.01 15.96

Table 2: Word and sentence error rates on the OGI num-

bers database using boost2.

on training and test data sets. Boost2 achieved 17.8%

word error reduction, and 11.4% sentence error reduc-

tion on the �nal test data set. However, the results

from boost2 are marginally better than those from

boost1 which suggests no more classi�ers need to be

constructed.

4. Conclusion

Hybrid speech recognition systems lack consistency

between training and testing criteria. This often leads

to a suboptimal solution. This paper has presented

a method to standardize training and testing crite-

ria for hybrid ANN/HMM speech recognition systems

while preserving a feedforward neural network archi-

tecture. The best result using this method obtains

a reduction of 17.8% in word error rate on the digit

recognition task.

5. Acknowledgement

This work was supported by the National Science

Foundation, the O�ce of Naval Research, DARPA,

and the member companies of CSLU.

References

[1] Y. Bengio, R. Mori, G. Flammia, and R. Kompe.

Global optimization of a neural network hidden

markov model hybrid. IEEE Trans. on Neural

Networks, (3):252{259, 1992.

[2] J. Tebelskis. Performance through consistency:

Connectionist large vocabulary continuous speech

recognition. Proc. ICASSP, pages 3307{3310,

1995.

[3] L.R. Bahl, P.F. Brown, P.V.De Souza, and R.L.

Mercer. A new algorithm for the estimation of

hidden markov model parameters. Proc. ICASSP,

pages 493{496, 1988.

[4] K.F. Lee and S. Mahajan. Corrective and rein-

forcement learning for speaker-independent con-

tinuous speech recognition. Computer Speech and

Language, 4(3):231{245, 1990.

[5] L. Breiman. Bias, variance, and arcing classi-

�ers. Technical Report 460, Department of Statis-

tics, University of California, Berkeley,California

94720, April, 1996.

[6] Y. Freund and R.E. Schapire. A decision-theoretic

generalization of on-line learning and application

to boosting. Proceeding of the second European

Conference on Computational Learning, 1995.

[7] G. Cook and T. Robinson. Boosting the perfor-

mance of connectionist large vocabulary speech

recognition. Proceedings of the International Con-

ference on Spoken Language Processing, pages

1305{1308, 1996.

[8] R. Cole, M. Noel, T. Lander, and T. Durham.

New telephone speech corpora at cslu. Proceedings

of the European Conference on Speech Technology,

pages 821{824, 1995.


