
GENERATING SEMANTICALLY CONSISTENT INPUTS

TO A DIALOG MANAGER

Alicia Abella and Allen L. Gorin

AT&T Labs Research

180 Park Ave. Florham Park, NJ 07932

fabella,algorg@research.att.com

ABSTRACT

Spoken dialog systems interpret a user's request and

engage in conversation if the need arises. It is the re-

sponsibility of the dialogmanager to determine if this

need is present and how to proceed. Our spoken dia-

log system is constructed to su�ciently understand a

user's response to the open-ended prompt 'How may

I help you?' in order to route a caller to an appro-

priate destination, with subsequent processing for in-

formation retrieval or call completion. In this paper

we describe how to structure the relationships among

the call types into an inheritance hierarchy. We then

describe an algorithm which exploits this hierarchy

and the output of a spoken language understanding

module to generate a set of semantically consistent

inputs.

1. INTRODUCTION

There exists a large number of spoken dialog systems

whose dialog managers di�er in the strategies they

employ, in the way they represent and manipulate

task knowledge and in how much initiative they take.

Examples of such systems include [5], [2], [10] and [7].

Our dialog manager employs general dialog strate-

gies to engage a user in a dialog [1], utilizes object-

oriented paradigms for representing task knowledge

and applies an optimization algorithm for solving the

problem of determining a semantically consistent set

of inputs. It is often the case that a user's utter-

ance needs clari�cation either because the user has

supplied too much information or not enough. In

order to exhibit an appropriate behavior it is impor-

tant for the dialog manager to infer the user's inten-

tion, detect the presence of ambiguities based on the

task knowledge and construct a semantically consis-

tent representation of the user's intention. We o�er

an exact algorithm for solving this problem. A sim-

ilar problem is addressed by [7] but with a heuristic

solution.

Our spoken dialog system is constructed to under-

stand the response to the open-ended prompt 'How

may I help you?'. An example dialog exchange with

the system is

User: I seemed to have dialed a wrong number can

you give me credit?

System: What was the number that you dialed?

User: 555 4456

System: Was the call billed to the phone you're call-

ing from now?

User: No.

System: How was the call billed?

User: To my credit card.

System: May I have your card number, please?

User: 0000 1234 5678 0000

System: I've given you credit for that call.

Many user interface issues arise when designing such

unconstrained systems, a discussion of this can be

found in [3].

In the next section we introduce an inheritance

hierarchy of call-types (services). This hierarchy and

the output of the Spoken Language Understanding

(SLU) module [4][9] is used by the dialog manager to

generate a semantically consistent combination of call

types in the form of a Boolean formula. The Boolean

formula is then used by the dialog manager to ask

clarifying questions, ask for further information re-

quired to complete the transaction and determine in

what order to ask such questions. This formula is at-

tained through a Boolean formula minimization pro-

cess and always yields a minimal and consistent com-

bination of call types. Furthermore, a change in the

hierarchy does not require changing the dialog man-

ager. This algorithm together with a set of general

purpose dialog strategies constitutes our dialog man-

ager.

2. TASK REPRESENTATION

Our task requires that the system classify a user's

call into one (or more) call types out of 15 (a subset

is illustrated in �gure 1) or send the call to a human

agent (OTHER).

Each call type is represented as a class. Each

class may have attributes associated with it that de-

scribe the class. These attributes may be speci�c to

the class or may be inherited from other classes. Fig-

BILLING CREDITDIAL FOR MEINFORMATION

.

RATE

TIME..

OTHER

MUTUAL

THIRD NUMBERCARDCOLLECT

HELP

PERSON TO PERSON

EXCLUSION

BILLING

AREA CODE

Figure 1: Inheritance hierarchy for a subset of call

types.

DIAL_FOR_ME

COLLECT THIRD_NUMBER

card_number:

BILLING

billing_method:
forward_number:

CARD

billing_number:

Figure 2: Examples of call types and their associated

attributes.

ure 2 illustrates an example of several call types DIAL

FOR ME, BILLING, CARD, COLLECT, and THIRD

NUMBER. Since DIAL FOR ME is an ancestor class

of BILLING and BILLING is in turn an ancestor class

of CARD, COLLECT, and THIRD NUMBER they

each inherit the forward number attribute fromDIAL

FOR ME. In addition, CARD has card number and

THIRD NUMBER has billing number. Since COL-

LECT only requires the forward number it needs no

additional attributes.

The relationship among the call types and auxil-

iary concepts (shown in boldface) is illustrated in �g-

ure 1. The 15 call types are subdivided into three cat-

egories, INFORMATION, DIAL FOR ME, BILLING

CREDIT and the additionalOTHER. The system de-

scribed in [4] does not take advantage of the relation-

ships among call types when engaging the user in a

dialog. This new approach utilizes this hierarchy to

generate the semantically consistent combination of

DIALOG MANAGER

1. General-purpose dialog
 strategies
2. Generation of semantically
 consistent inputs
3. Response handling4. Speech recognition

3. Response database

APPLICATION

1. Inheritance hierarchy

2. Language understanding

Figure 3: Separation of application speci�c compo-

nents from the generic components.

call types that are representative of the caller's re-

quest.

Figure 3 illustrates the dialog manager architec-

ture. The dialog manager itself consists of general

purpose dialog strategies as described in [1], the algo-

rithm for generating the set of semantically consistent

inputs, and response handling. Response handling

entails accessing the proper prompts to play back to

the user. The application speci�c components uti-

lized by the dialog manager include the inheritance

hierarchy, the spoken language understanding mod-

ule ([9]), the response database, which contains the

prompts to play and the speech recognition module

([6]).

In the next section we will describe how the dialog

manager exploits the inheritance hierarchy and task

knowledge using several examples.

3. EXAMPLES OF DIALOG BEHAVIOR

Currently a user can speak a request uently and

the recognizer passes its result to the SLU module

which produces a set of call types with the ranked

probabilities that a caller wanted each of the various

services. The following examples illustrate the dialog

manager's utilization of the inheritance hierarchy.

Conjunction of call types

User: I would like to make a person to person call

to Tokyo but can you tell me what time it is there

now?

SLU output: f(PERSON TO PERSON,0.97),

(TIME,1.00)g
Boolean formula: TIME AND PERSON TO PER-

SON

System: It is currently 11AM. How would you like

to bill this call?

In this example the dialog manager examines the in-

heritance hierarchy to �nd that the two call types

returned by the SLU module belong to two unrelated

branches of the inheritance hierarchy, which implies

that the caller wishes the system to ful�ll both of

its requests. Each call type has associated with it a

priority. Informational requests have the highest pri-

ority and are therefore satis�ed �rst. Because of this,

TIME, which is a descendant of INFORMATION is

processed �rst. The dialog manager then proceeds

to process the PERSON TO PERSON request which

�rst requires eliciting the billing method.

Mutually exclusive call types

User: I would like to charge this call.

SLU output: f(THIRD NUMBER,0.75),

(CARD,0.24),g1

Boolean formula: THIRD NUMBER OR CARD

System: How would you like to bill this call?

In this example it is necessary for the dialog manager

to initiate a clari�cation dialog to determine which

billing method to apply. Again the dialog manager

examines the inheritance hierarchy to �nd that these

call types are mutually exclusive since there can only

be one billing method. The relation of mutual ex-

clusion is implemented by introducing the concept of

MUTUAL EXCLUSION as an ancestor of BILLING.

Superseding call types

User: I'm trying to make a calling card call can you

help me dial it?

SLU output: f(DIAL FOR ME,0.78), (CARD,0.96)g
Boolean formula: CARD

System: May I have your card number, please?

User: 000-123-4567-000

System: What number would you like to call?

In this example, it was not necessary for the dialog

manager to ask for the billing method, which would

be the case if only the call type DIAL FOR ME had

been returned. Instead it can go ahead and ask for

the calling card number and phone number because

DIAL FOR ME is an ancestor of CARD which im-

plies that CARD supersedes DIAL FOR ME. Each

attribute of a call type has an associated priority.

This priority is used to determine which attribute to

ask about �rst. For the CARD call type the attribute

card number has a higher priority than phone num-

ber and therefore is asked about �rst.

Unsolicited information

User: Yes operator I'm trying to dial 123 4567 but

I can't get through.

SLU Output: f(DIAL FOR ME, 0.84)g
Boolean formula: (DIAL FOR ME)

System: Would you like to make a call?

User: Yes.

System: May I have that number again?

User: 555 4567

In this example, it was necessary to verify that the

user wanted to make a call since the con�dence was

not high enough. However, it was not necessary to

1For this particular request the SLU module does not return

theCOLLECT concept because it has a very low probability.

explicitly ask the user What number would you like

to call? but rather only to verify the phone number

that was provided in the initial utterance.

Context Switch

User: Um uh can I make a collect call?

SLU Output: f(COLLECT, 0.80)g
Boolean formula: (COLLECT)

System: Would you like to make a collect call?

User: No no charge it to my calling card.

SLU Output: f(CARD, 0.85)g
Boolean formula: (CARD)

System: Would you like to make a card call?

User: Yes.

It is very useful for the system to be able to handle a

context switch especially if the user has made a mis-

take and wishes to repair it, which is the case in this

example.

In the next section we will describe the algorithm

for generating the Boolean formula.

4. THE ALGORITHM

The Boolean formulaminimization algorithm for gen-

erating the minimal and consistent combination of

call types eliminates the often complex coding of if

: : : then rules that often accompany dialog managers.

Our dialog manager is data driven, we provide it with

the inheritance hierarchy and it applies the Boolean

formulaminimization algorithm. If we change the in-

heritance hierarchy we do not have to create a new di-

alog manager. Another advantage of this data driven

approach is in its ability to facilitate portability to

other applications. To use the dialog manager for a

di�erent application requires creating a new inheri-

tance hierarchy but not a new dialog manager.

We will describe the algorithm for generating the

Boolean formula via an example:

User: I would like to charge a person to person call.

SLU Output: f(THIRD NUMBER,0.67),

(CARD,0.25), (PERSON TO PERSON,0.97)g2

Boolean formula: (PERSON TO PERSON AND

THIRD NUMBER) OR (PERSON TO PERSON

AND CARD)

System: How would you like to bill this call?

From the inheritance hierarchy, the system knows

that CARD and THIRD NUMBER are mutually ex-

clusive and that PERSON TO PERSON can be per-

formed in conjunction with either of these two call

types. As a result, the semantically consistent combi-

nation of call types is (PERSON TO PERSON AND

THIRD NUMBER) OR (PERSON TO PERSON

AND CARD). The dialog manager maps the initial

interpretation to an interpretation based on the in-

heritance hierarchy and uses this to determine which

of its dialog strategies to apply. The initial interpre-

110

011001

110

010

111101100

111

111 111

000

110001000

110

11

1

0

100100A
BC

Figure 4: Initial bit strings representing the values

of the variables for each cell (shaded) and the result

of applying the transformation A = B = A ^B (un-

shaded).

00

1

0

10

1

0110

0

110100A
BC

Figure 5: Result of applying Boolean formula mini-

mization. (A AND C) OR (B AND C)

tation, which is PERSON TO PERSONAND THIRD

NUMBER AND CARD is mapped into an ambigu-

ous interpretation based on the inheritance hierarchy

since THIRD NUMBER and CARD can not coincide.

The dialog manager then knows to apply a disam-

biguation strategy to prompt the user to specify the

billing method. Unlike an example that would re-

quire eliciting missing information this scenario is an

ambiguous one because the SLU module has provided

two billing methods, as opposed to none.

In general, the semantically consistent combina-

tion of call types can be found using Boolean formula

minimization. We will illustrate the algorithm using

the Karnaugh map method for Boolean formula min-

imization [8]. We will begin by abstracting the call

types from this example to A, B and C, where A

and B are mutually exclusive. Because A and B are

mutually exclusive the resulting formula should not

contain A AND B. Utilizing this fact, we �ll up the

Karnaugh map in such a way that the minimization

yields a formula that does not contain A AND B.

This is done using the following algorithm:

Input: SLU output, inheritance hierarchy

Output: Boolean formula

Step{1 Create a KarnaughMap whose cells each

contains a bit string representing the val-

ues of the variables for that cell (shown in

the shaded region of �gure 4).

Step{2 For all variables that are mutually ex-

clusive (A and B in this example) apply

the transformation A = B = A _B. The
result of this transformation is shown in

the unshaded region of �gure 4.

Step{3 For all unshaded cells of �gure 4 evalu-

ate X = A^B ^C to yield the 1s and 0s

used in the standard Karnaugh Map.

Step{4 Perform Boolean formula minimization

on X via the Karnaugh Map method [8]

as illustrated in �gure 5.

If we apply this algorithm on our example the

output is the Boolean formula (A AND C) OR (B

AND C). The dialog manager then uses this formula

to determine that it needs to ask a clarifying ques-

tion.

5. CONCLUSION

This paper presents a method for determining a set
of semantically consistent call types. Task knowledge
is represented in an inheritance hierarchy and rela-
tions (superseding and mutual exclusion) are de�ned
between call types. These relationships govern the
generation of the �nal set of semantically consistent
call types. This set is generated using a Boolean for-
mula minimization algorithm. It is this �nal set of
call types that governs the dialog behavior.

6. REFERENCES

[1] A. Abella, M. K. Brown, and B. Buntschuh. Develop-

ment principles for dialog-based interfaces. European

Conference on Arti�cial Intelligence, 1996.

[2] S. Bennacef, L. Devillers, S. Rosset, and L. Lamel.

Dialog in the railtel telephone-based system. Inter-

national Conference on Spoken Language Processing,
1996.

[3] Susan Boyce and Allen L. Gorin. Designing user in-

terfaces for spoken dialog systems. Proc. Intl. Sym-

posium Spoken Dialog (ISSD), Oct. 1996.

[4] A.L. Gorin, G. Riccardi, and J.H. Wright. How may

I help you? Speech Communciation, to appear.

[5] Helen Meng and Senis Busayapongchai et. al.

Wheels: A conversational system in the automobile

classi�eds domain. International Conference on Spo-
ken Language Processing, 1996.

[6] G. Riccardi, A. L. Gorin, A. Ljolje, and M. Riley.

A spoken language system for aumated call routing.

Proc. ICASP Munich, Germany, pages 1143{1146,

1997.

[7] M.D. Sadek, A. Ferrieux, A. Cozannet, P. Bretier,

F. Panaget, and J. Simonin. E�ective human-

computer cooperative spoken dialogue: the ags

demonstrator. International Conference on Spoken

Language Processing, 1996.

[8] Stephen H. Unger. The essence of logic circuits.
Prentice Hall, 1989.

[9] J.H. Wright, A. L. Gorin, and G. Riccardi. Auto-

matic acquisition of salient grammar fragments for

call-type classi�cation. Eurospeech, 1997.

[10] S.J. Young and C.E. Proctor. The design and im-

plementation of dialogue control in voice-operated

database inquiry systems. Computer Speech and
Language, pages 329{353, 1989.

