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ABSTRACT

We describe an algorithm based on acoustic clustering
and acoustic adaptation to significantly improve speech
recognition performance. The method is particularly use-
ful when speech from multiple speakers is to be recog-
nized and the boundary between speakers is not known.
We assume that each test data segment is relatively ho-
mogeneous with respect to the acoustic background and
speaker. These segments are then grouped using an ag-
glomerative acoustic clustering algorithm. The idea is
to group together all test segments that are acoustically
similar. The speech recognition models are then adapted
separately to each test data cluster. Finally these adapted
models are used to recognize the data from that cluster.
This algorithm was used in SRI's system for the 1996
DARPA Hub4 partitioned evaluation. Experimental re-
sults are presented on the 1996 H4 development data set.
It was found that an improvement of 9.5% was achieved
by using this algorithm.

1. INTRODUCTION

Recently there has been much research on acoustic adap-
tation [1, 2, 3, 4, 5] to improve the performance of
speech recognition systems in mismatched training and
testing acoustic environments. Adaptation techniques
typically adapt a model trained under one condition
to the test environment using a small amount of data
from the test environment. Common approaches in-
clude maximum-likelihood (ML) transformation-based
techniques [1, 2, 3], and Bayesian algorithms [5]. These
approaches have been shown to give significant improve-
ments in performance for cases such as mismatched
speakers, and channels [1, 2, 3]. Touse these techniques it
is necessary to have a sufficient amount of adaptation data
from the test environment. However, in some situations,
this may be difficult to get. For example, in broadcast
news, the domain for the 1996 DARPA Hub4 benchmark
tests, the acoustic environment is continually changing.
There are constant switches of channel types, background
noise, and speakers. Thus, to adapt the models to each
test environment, it is necessary to collect all test segments
from a particular environment before adapting the model
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to that environment. Unsupervised acoustic clustering of
the test segments can be used to group acoustically similar
segments. Clustering also serves the purpose of more ro-
bust adaptation parameter estimation because similar test
environments can be clustered, resulting in more data for
adaptation. In this paper, we report on an algorithm that
uses this idea specifically to cluster the test data speakers
in the 1996 H4 partitioned evaluation (PE) development
set. Seed recognition models are then adapted to each
speaker cluster. Experimental results show that the algo-
rithm gives a significant 9.5% improvement over the seed
models.

2. BASELINE SYSTEM

The 1996 DARPA Hub4 evaluation was divided into
two individual problems. In the unpartitioned evaluation
(UE), the test data consisted of a set of television and radio
shows in their entirety. However, commercials and sports
reports were not included in the data to be recognized,
as the language used was considered to be very different
from the rest of the data. In the UE, it is necessary to au-
tomatically excise the speech segments from the test data
before recognizing them. In the PE, each test show was
partitioned into segments of speech. Thus, pure music or
noise segments were removed by hand, and only speech
segments remained. Each segment contained speech from
a single speaker. In addition, the segments were homoge-
neous with respect to the acoustic background condition
or speech style. The segments were classified into seven
different acoustic focus conditions, FO, F1, F2, F3, F4,
F5, FX, as described in [6], and the labels were provided
for use in the evaluation. The experiments reported in this
paper use the PE development data.

Our baseline system was a gender-dependent Genonic
hidden Markov model (HMM) system [7] adapted to each
acoustic focus condition by using the training data pro-
vided for that focus condition. This approach results
in condition-specific HMMs that can be used to recog-
nize speech from the corresponding focus condition. ML
transformation-based adaptation was used to adapt a seed
Genonic HMM to each of the acoustic focus conditions.
A parametric transformation of the HMMs is postulated,
and the parameters of the transformation are estimated
by maximizing the likelihood of the training data from
the acoustic focus condition [1, 2, 3]. We used a block-
diagonal affine matrix transformation of the HMM mean



vectors in this stage [4]. This is a modification of the algo-
rithm presented in [2] that results in more estimation of the
adaptation transformations. To approximate more com-
plex transforms, we used multiple block-diagonal affine
transformations, where each transformation is tied to a
group of Gaussians. In our adaptation algorithm, this ty-
ing is achieved using hand-generated phone clusters when
the number of transformations is less than the number of
phones. If the number of transforms is greater than the
number of phones, then the transforms are tied to Gaus-
sian groups generated using the HMM state clustering
algorithm used to train our Genonic HMMs [7]. For
the condition-specific models, we used 11 block-diagonal
affine transforms of the HMM mean vectors. The number
of transforms was optimized to give the lowest word error
rate on the 1996 Hub4 PE development data. While the
results presented in this paper are on this same data set,
the number of adaptation parameters is relatively small
compared to the amount of training data, and the results
have been found to generalize well for both this data set
and in other experiments. Furthermore, the performance
is not very sensitive to small changes in the number of
transforms. Since the F2 condition corresponds to tele-
phone speech, we decided to use seed models trained on
the Switchboard and Macrophone databases for F2. For
all other focus conditions, we used seed models trained on
the Wall Street Journal (WSJ) SI-284 database. Details
of this approach are presented in [8].

3. TEST DATA CLUSTERING AND
ADAPTATION

The condition-specific models described in Section 2 are
estimated using adaptation algorithms and the training
data for each focus condition. However, there may still
be a mismatch between these condition-specific models
and test data from the same acoustic condition. Such
mismatches are largely due to different speakers between
training and testing. In addition, there may be small
differences in the training and test acoustical conditions,
leading to a mismatch. Since the main source of variabil-
ity between the training and test conditions is the different
speakers, we used an unsupervised bottom-up agglomera-
tive clustering algorithm to cluster acoustic segments that
were similar to each other. Since acoustic segments of
the same speaker are similar, the resulting clusters are
typically homogeneous with respect to speakers.

Once the segments are clustered, the condition-specific
models are separately adapted to each cluster by using
the block-diagonal mean transformation [4], followed by
a variance scaling transformation described in [3, 4]. The
variance scaling transform has also been studied more
recently in [9]. In this stage we used three separate
transformations, including a separate transformation for
the silence Gaussians. The reference transcriptions for
adaptation were derived by running a one-pass Viterbi
recognition search through word lattices [10] using the
condition-specific models described in Section 2. Once
the models are adapted, it is possible to re-recognize the

acoustic segments for each cluster and then re-adapt the
models by using these new hypotheses. However, we did
not observe a significant improvement with multiple iter-
ations of this kind, and hence we used only one iteration.
For clustering, the distance between two acous-
tic segments X; = {@xi1,..., %7} and X; =
{=j1,...,%;1;} was computed using a symmetric rela-

tive entropy distance,
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where A; and A; are the underlying statistical models of
X; and X;. In our work, we used a Gaussian mixture
model (GMM) to model each test segment. The distance
between two clusters was then computed as the maximum
distance between segments in the two clusters. A thresh-
old on the minimum distance between any pair of clusters
defines a cut in the agglomerative cluster tree and hence
a set of test segment clusters. The maximum, or furthest
neighbor distance, generally resulted in more speaker-
homogeneous clusters than a nearest neighbor distance,
or average distance between clusters. This can be seen
for the case of the maximum and minimum distances in
Figure 1 which plots the average speaker-class entropy
over all the clusters against the distance threshold. The
speaker-class entropy measures the speaker homogeneity
and is computed as
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where N is the number of clusters, Ng, is the num-
ber of speakers in cluster ¢, P(S;|C}) is the conditional
probability of speaker j in cluster z, and the term being
summed is the speaker-class entropy for cluster Z, which
is a measure of the homogeneity of that cluster. As the
distance threshold increases from O to oo, the number of
clusters decreases from the number of test segments to 1,
and the entropy goes from 0 to a maximum. For more
speaker homogeneous clusters, we expect the entropy to
increase slowly as the distance threshold is increased. Fig-
ure 1 shows that for the maximum distance, the entropy
increase is much more gradual than for the minimum
distance, indicating more speaker homogeneous clusters
for the maximum distance. For our system, the distance
threshold was empirically determined. By examining the
clusters on the 1996 H4 development set, we found that
the clusters were indeed quite homogeneous with respect
to speakers. This clustering procedure was previously
described by us in [11], but applied to cluster the training
data speakers. In the work reported here, we used it to
cluster the test data segments.

Since a mixture model must be trained for each segment
to compute the relative entropy measure, and many of the
segments were short in duration (some less than 1 second),
we varied the number of Gaussians in the model of each
segment based on a heuristic function of the segment
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Figure 1. Comparison of agglomerative clustering
methods

duration length. This prevented over-fitting of the model
to the short data lengths. Figure 2 shows a histogram
of the number of Gaussians used in the GMMs for each
development segment of the FO condition. As can be seen,
the number of Gaussian mixtures varies from one to more
than one hundred.

4. EXPERIMENTAL RESULTS

The Hub4 PE test data consisted of test segments that were
marked as belonging to the different focus conditions.
Since some of the test segments were very long, we further
segmented these into nominally 10-second segments so
as to reduce the memory and computation requirements
on the decoding process. This was done by using an
automatic segmentation algorithm described in [8].

The front-end feature extraction was based on mel-
frequency cepstrum processing. The original speech data
was sampled at 16,000 samples per second. For the F2
(telephone) segments, the speech was band limited, and
down-sampled to 8,000 samples per second. To extract
features, the speech was then hamming-windowed with
a 25.6-ms window, and the window was advanced every
10 ms. Each frame was represented by 12 mel-frequency
cepstrum coefficients, the log energy, and their first- and
second-order time derivatives (delta and delta-delta fea-
tures), for a resulting 39-dimensional feature vector.

The performance of the baseline models described in
Section 2 and the cluster-adapted models described in
Section 3 on the Hub4 PE development test data is shown
in Table 1. The baseline models were generated using 11
block-diagonal affine transformations of the seed model
mean vectors. The cluster-adapted models used three
transformations. The number of transformations was ex-
perimentally chosen to give the lowest error rate. Whereas
for the baseline we used only the block-diagonal affine
transformation of the HMM mean vectors, for cluster-
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Figure 2. GMM sizes used to model the test seg-
ments

Condition Models
Condition- Test-cluster-adapted
specific
Mean | Mean and variance

FO 22.6 213 20.8
F1 41.2 38.8 38.8
F2 472 440 423
F3 45.6 425 42.4
F4 36.9 344 33.8
F5 36.3 28.3 28.1
FX 63.8 57.8 572

[ An [ 412 | 378 | 37.3

Table 1. Performance of test-condition-adaptation

adaptation we tried both a block-diagonal affine transfor-
mation of the HMM means, and the mean transformation
followed by a variance scaling transformation [3, 4].

From the table, we see that the acoustic clustering and
adaptation algorithm gives a significant improvement over
the baseline condition-specific models for every focus
condition. Over all the data, we get a 8.3% relative im-
provement when using only mean adaptation for the test
clusters and a 9.5% relative improvement when using
mean and variance adaptation. We had also tried variance
adaptation to train the baseline condition-specific models
of Section 2. However, we did not observe any significant
improvement over just mean adaptation. It is interesting
to note that for the cluster-adapted models, variance adap-
tation gives a small but consistent improvement for all the
focus conditions. This improvement is statistically signif-
icant at the 0.3% significance level using a paired-sample
sign test on the word error rate of the test sentences.

To evaluate the advantage of performing the unsuper-
vised speaker clustering, we also adapted the condition-
specific models to each test condition without doing any



Condition Adapt to test conditions
Single Cluster Multiple clusters
Mean | Mean and || Mean | Mean and
variance variance
FO 22.4 22.7 21.3 20.8
F1 40.0 40.3 38.8 38.8
F2 46.9 46.2 44,0 42.3
F3 44.7 44.8 42.5 424
F4 35.0 34.5 34.4 338
F5 314 31.1 28.3 28.1
FX 62.2 62.2 57.8 57.2
|| All H 399 ] 39.8 H 37.8 | 37.3 ”

Table 2. Effect of clustering

clustering. Thus, in this case, all the data from any test
condition was used to adapt the models as opposed to
only the data in each of the speaker clusters in the test
data. Since using all the test data allowed us to estimate a
larger number of transformations, we used 11 transforma-
tions, including a separate transformation for the silence
Gaussians, as compared to 3 transformations in the case
of adapting to the speaker clusters.

Table 2 shows the advantage of using the unsupervised
clustering method over simply adapting to the test con-
ditions. The second two columns show the word-error
rate when the condition-specific models were adapted to
the test conditions, using all the data in each acoustic fo-
cus condition (single cluster). The last two columns are
replicated from Table 1 and show the performance after
adaptation to the test data clusters (muitiple clusters).

We can see that adapting to the individual test condi-
tions gave a relative improvement of 3.4% as compared
to the condition-specific models, and adapting to the test
data clusters gave a further 6.3% improvement, resulting
in a total relative improvement of 9.5% compared to the
condition-specific models. Both these improvements are
statistically significant at lower than 0.3% level of signifi-
cance using the paired-sample sign test referred to earlier.
It is clear that adapting to the test data clusters gave a
consistent improvement compared to adapting to only the
test conditions for all acoustic conditions.

5. SUMMARY AND CONCLUSIONS

We presented a novel algorithm for adaptation during test-
ing, which used an unsupervised agglomerative clustering
algorithm to cluster the test segments, followed by ML
transformation-based adaptation of the condition-specific
models to these clusters. A symmetric relative entropy
distance between test segments was used for clustering.
We described a robust method to estimate the models for
each test segment necessary for the computation of the
distance measure. It was shown that adapting to all the
test data in each focus condition gave a 3.4% decrease in
error rate as compared to the condition-specific models.
However, adapting to the individual clusters proved to be
even more important and gave a 9.5% improvement over

the condition-specific models.
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