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ABSTRACT

To adapt the large number of parameters in a speech
recognition acoustic model with a small amount of data,
some notion of parameter dependence is needed. We
present a dependence model to relate parameters in a
parsimonious framework using a Gaussian multiscale
process defined by the evolution of a linear stochas-
tic dynamical system on a tree. To adapt all classes
from all adaptation data, we formulate adaptation as
optimal smoothing of the tree process. This approach
is used to adapt two types of models: Gaussians, and
Gaussian processes (segment models) characterized by
a polynomial mean trajectory. Recognition results pre-
sented on the Switchboard corpus show improvements
in supervised and unsupervised modes.

1. INTRODUCTION

Adaptation of acoustic models has become increasingly
important to improving performance of a speaker-
independent speech recognition system. Of particu-
lar interest are approaches that allow adaptation of a
large number of parameters, like that in a large vocabu-
lary continuous speech recognition system, with a small
amount of adaptation data. For example, in a system
based on K Gaussian models, transform all Gaussians
with observations from N Gaussians where K > N.
One approach to this problem involves partitioning the
K Gaussians into L classes and estimating one trans-
formation for all Gaussians in a class, based on adap-
tation data for that class. To adapt classes with no
observations, one can define a hierarchy of classes, e.g.
a tree with L leaves, and “back-off” to a broader trans-
formation. Alternatively (or in addition), models of de-
pendence between means of classes have been recently
attempted using extended-MAP [11, 14, 6, 2] and linear
regression [4, 1]. For implementation feasibility, these
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methods assume that components of the feature vector
are uncorrelated, along with using a small L.

An important class of dependence models relate the
L classes by making Markovian assumptions on the de-
pendence structure. They represent the joint correla-
tion in terms of low order conditional distributions and
hence use a relatively small number of parameters to
characterize the dependence without heuristics or ap-
proximations. The only speech application of a Marko-
vian model to adaptation so far is based on Markov
random fields (MRF) [13]. In this paper, we present an-
other Markovian model that relates entire vectors (the
means of the classes) using a Gaussian multiscale pro-
cess defined by the evolution of a linear stochastic dy-
namical system on a tree. To adapt all classes from all
adaptation data, we formulate adaptation as optimal
smoothing of the tree process. We use this approach
to adapt two types of distributions for acoustic mod-
els: Gaussians, and Gaussian processes characterized
by a polynomial trajectory for the mean. In Section 2,
we introduce the multiscale model with the associated
smoothing and training algorithms. Section 3 shows
how the model can be used for adaptation, and exper-
imental results are given in Section 4. The key results
are summarized in Section 5.

2. MULTISCALE TREE PROCESSES

Multiscale stochastic processes represent an important
class of models, of which a particularly useful class is
based on scale-recursive dynamics on trees [3, 12]. De-
noting a node in the tree by ¢ with parent t7, a state-
space model for the evolution in scale of the Gaussian
tree-based process X and its noisy observation Y can
be written as

z(t) = A)z(ty) +w(?) (1)
y(t) = CH)x(t) +o(t) 2)

where z(t) is the state of the process at node ¢. The
root node state £(0) has distribution N (0, 3(0)), where



N (1, Y) denotes a Gaussian with mean p and covari-
ance X. The process noise w(t) is white, independent of
z(0), and has distribution N (0,Q(t)). The state z(t)
is observed via a noisy measurement y(t), where the
measurement noise v(t) is white, independent of x(0)
and w(t), and has distribution N'(0, R(t)). We allow
the branching to be non-uniform.

Given Y, the set of all available measurements at
the nodes (possibly at a subset of nodes), the smoothed
estimate of the state Zs(t) = E{z(t)|Y } and the associ-
ated error covariance P(t|Y) = E{[z(t) — & (¢)][z(t) —
#4(t)]T} can be computed using a generalization of the
Rauch-Tung-Striebel (RTS) algorithm [3, 7]. Smooth-
ing is done in two sweeps: an upward sweep from the
leaves to the root, followed by a downward one from
the root to the leaves. Maximum-likelihood estimates
of the parameters of the tree process (2(0), A(t), Q(t),
C(t), R(t)) can be obtained by applying the RTS and
Expectation-Maximization (EM) algorithms to multi-
ple independent sample paths of the process [10, 7].

Multiscale models offer a number of advantages over
MRFs including the ability to tie parameters of varying
degrees, which is useful if we have a limited amount of
training data, and efficient, non-iterative, recursive and
parallelizable algorithms for state estimation.

3. APPLICATION TO ADAPTATION

Let G; denote the Gaussians in class [ and p; the mean
of one Gaussian. We model adaptation for the Gaus-
sians in class | by a common shared shift z(1l):

pi =pi+x(l), Vieg (3)

where p§ denotes the mean p; after adaptation. Such
a shared shift approach has been used for Gaussians in
hidden Markov models (HMMs) [14] and the stochastic
segment model (SSM) [7], and for polynomial segment
models (where a “shift” is also polynomial) [9].

ML estimates for the shift #(/) and associated er-
ror covariance P(l) can be obtained from adaptation
data for each class [ independently [9]. Our goal is to
obtain smoothed estimates of the shifts (1) for all
classes, using adaptation information from all the ob-
served classes in the form of Z(I), P(l), | € a subset
of {1...L}. Define a Gaussian tree-based shift pro-
cess (Equation 1) with L leaves, and associate the leaf
node states with the shifts of the L classes we wish
to model dependency between. Given z(), P(I) at the
leaves, we can compute & (l), Ps(l) using the tree RTS
smoother. Due to the Bayesian nature of the smooth-
ing, as the amount of adaptation data increases for
a leaf, the smoothed shift approaches the unsmoothed
shift and the estimated parameters will converge to the
standard ML speaker-dependent estimate.

Observation Model. The usual dynamical sys-
tem formulation includes an observation equation for
the shifts (Equation 2). Here, a variable number of
independent observations y;(I) are associated with leaf
nodes [, and no observations are associated with inter-
nal nodes. All observations associated with a node are
factored into #(l) and P(I), so an explicit observation
equation is not needed.

Class Definition and Topology. Context-
dependent models are typically clustered in the form of
a tree (e.g. ML clustering of Gaussians and PSMs [8])
for each region (or state) of a phone. Figure 1(a) in-
dicates the tree for one region. Each node of the tree
represents an equivalence class of triphones. Nodes at
a certain “cut” through the tree defines terminal adap-
tation classes to share shifts (Equation 3), the boxes
in Figure 1(a). One popular, but ad-hoc, option for
adaptation is the “back-off” strategy where the shift
is computed at the most detailed node which has more
than T's (shift threshold) adaptation frames, and this is
copied to all child terminal adaptation classes as shown
in Figure 1(b).

The topology of the clustering tree is also used for
multiscale smoothing. Class-dependent shifts are com-
puted only at these terminal adaptation nodes (Fig-
ure 1(c)), which are then smoothed using the multiscale
model (Figure 1(d)) to get smoothed shift estimates at
all nodes. For a fair comparison of MS vs. back-off
approaches the same topology is used in both cases.

Parameter Estimation. The tree process param-
eters (X(0), A(t) and Q(t)) are estimated from training
data using the EM algorithm. (There is no need to es-
timate C'(t) and R(t) as we do not have an explicit
observation equation, as mentioned earlier.) Here, the
A and @) parameters are shared among all nodes of a
phone, i.e. for N phones, there are N sets of (4, Q)
parameters for the tree. Each training speaker con-
tributes one “sample path” of the multiscale process.

To start the EM iterations, we need initial esti-
mates of ¥(0), the A’s and the @Q’s. For each speaker
in the training set we compute covariances of ML (un-

smoothed) shifts at each terminal shift node. A frequency-

weighted average of these covariances across all speak-
ers is used both for ¥(0) and Q. We initialize all the
@s in the system to be the same and all A = I.

4. EXPERIMENTS AND RESULTS

Experiments were conducted on the Switchboard cor-
pus which has telephone-quality conversational speech.
The feature vector consisted of the first 14 mel-warped
cepstra (normalized with cepstral mean subtraction and
for vocal tract length [5]) computed every 10 msec,



O - terminal shift class - "back-off" shift class
a - class where independent shift is computed (based on T )

—> - shift inheritance

o - node of tree representing a multiscale process
x(0) - root node of multiscale process

Figure 1: Trees used for adaptation: (a) shows the
clustering tree with terminal adaptation classes, (b) is
for the “back-off” method of adaptation, while (c) and
(d) are for the multiscale smoothing approach.

their first differences and the first difference of log en-
ergy. Results for adaptation of both SSMs (Gaussians)
and PSMs are reported. The PSM systems used a 2-
region model, with each region modeled by a linear tra-
jectory Gaussian process with a single full covariance.
The SSM systems used a 5-region model, with each re-
gion represented by a full covariance Gaussian. Both
cases used gender-dependent models and ML clustered
triphones. The PSM and SSM adaptation systems had
300 and 150 terminal adaptation classes/region respec-
tively. Sixty hours of speech are used for training the
acoustic models and multiscale model for most exper-
iments; 136 hours are used in the guided adaptation
experiments.

Recognition is done using N-best rescoring: the top
N (=100) word-sequence hypotheses provided by BBN’s
Byblos system are rescored by the acoustic model (SSM
or PSM) and reranked by linearly combining the log
acoustic score with the number of words and phones
in the sentence (insertion penalties), the trigram lan-
guage model score and the duration score (based on
relative frequency) to minimize average word error in
the top ranking hypotheses. Recognition is performed
on a development test set comprising 7 conversations
(14 speakers and 6381 words, with an average of 2.3
min speech/speaker).

Batch Mode Adaptation. In batch adaptation,
the first half of each conversation is used as adaptation

data and the second half for testing. Results in Table 1
for supervised adaptation indicate the MS-smoothing is
better than the back-off MAP approach. In other ex-
periments [7], we found gains from MS-smoothing rela-
tive to the back-off approach to increase as the amount
of adaptation data is reduced, demonstrating the po-
tential of the multiscale model for rapid adaptation. In
the unsupervised mode, both the back-off and MS sys-
tems were usually worse than the speaker-independent
baseline.

Table 1: Supervised batch recognition with 2-region
PSMs. Error rates on the second half.

MAP back-off MS
44.1% 43.9%

SI baseline
44.5%

Transcription Mode Adaptation. In transcrip-
tion mode adaptation two passes are made over the
speech: the first to collect statistics for adaptation after
Viterbi alignment, and the second to perform recogni-
tion with the adapted models. The baseline unadapted
error rate was 43.2% while the best back-off (ML) and
MS case with the PSM resulted in 42.7% and 42.8%
respectively. These sets of experiments do not indicate
any advantage of using MS-smoothing over the back-off
system.

Guided Adaptation. In unsupervised batch and
transcription modes, we do not see a gain in using the
multiscale model over the back-off method. We conjec-
ture that this is explained by two main limitations in
the use of any model of dependence: 1) the model is
trained to “learn” dependence between correct observa-
tions of different sound classes but we use it at a high
error rate, and 2) in conventional transcription-mode
adaptation the same data used to estimate the adapta-
tion transformation in the first pass is scored with the
adapted models in the second pass, i.e. there are poten-
tially no new classes for the algorithm to generalize to.
In this case, there is little advantage to using any model
of dependence, and it is likely that ML techniques for
adaptation will be better.

Both limitations are addressed with guided adapta-
tion, i.e. adapting only with data from a subset of words
recognized with a high degree of confidence. This serves
to lower the error-rate for the speech used in adap-
tation, as well as tests the ability of the adaptation
approach to handle unseen classes (in the “incorrect”
parts of the speech).

We use a simplistic measure of word confidence based
on the relative frequency of that word appearing in that
position (according to a dynamic programming align-
ment) in the hypotheses. Experiments show that, in



unsupervised transcription mode, guided ML adapta-
tion is better than non-guided ML adaptation [7]. In
Table 2 we show that guided-MS adaptation is better
than guided-ML adaptation for a 5-region SSM. The
conditions are different from earlier experiments in that
the test set consists of 7 conversations each of Switch-
board and CallHome, improved language models and
signal processing, and acoustic models trained on 123
hours of speech.

Table 2: Guided unsupervised transcription mode
adaptation with a 5-region SSM system.

baseline | guided-ML | guided-MS

40.9% 40.4% 40.0%

Cost of Multiscale Smoothing. The computa-
tional complexity of the tree RTS smoother is O(d®n)
where d is the dimensionality of the state (shift pro-
cess) and n is the number of nodes (internal+leaf) in
the tree. The memory requirement is O(d?n). The
algorithm is inherently parallelizable, though our im-
plementation was on serial machines. Since the E-step
of the EM algorithm for parameter estimation uses the
RTS smoother, the complexity of training is O(d®*nrp),
where r is the number of runs of the multiscale pro-
cess (i.e. the number of training speakers) and p is the
number of EM iterations. The M-step computational
needs are insignificant in comparison to the E-step.

The computational and storage costs of using multi-
scale smoothing is a small part of the recognition needs.
For two trees of L = 300 each and d = 29, the mem-
ory image of the recognizer for adaptation increases by
about 9% relative to the unadapted baseline. An iter-
ation of the EM algorithm runs in 0.2 times real time
on a Sun Ultra-1, and 3 training iterations were run.
Adaptation costs for recognition are similar.

5. SUMMARY

We proposed a new dependence model based on a mul-
tiscale tree process, which allows one to optimally es-
timate shifts to adapt all models taking into consid-
eration all adaptation data. Our approach provides a
unified framework to handle classes with and without
observations, and the adaptation converges asymptot-
ically to standard ML speaker-dependent estimates as
data from a particular speaker increases. The depen-
dence model permits parameter tying of varying de-
grees, which is useful if we have a limited amount of
training data. Efficient algorithms exist for smoothing
and parameter estimation of such a process.

Experimental results on the Switchboard corpus in-
dicate improvements with small amounts of data in su-
pervised adaptation using multiscale smoothing, rela-
tive to ML and standard MAP adaptation. For unsu-
pervised transcription mode adaptation, we show that
guided multiscale smoothing gives maximum adapta-
tion gains.
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