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ABSTRACT

The mismatch that frequently occurs between the train-
ing and testing conditions of an automatic speech recog-
nizer can be e�ciently reduced by adapting the param-
eters of the recognizer to the testing conditions. The
maximum likelihood adaptation algorithms for continu-
ous-density hidden-Markov-model (HMM) based speech
recognizers are fast, in the sense that a small amount of
data is required for adaptation. They are, however, based
on reestimating the model parameters using the batch
version of the expectation-maximization (EM) algorithm.
The multiple iterations required for the EM algorithm to
converge make these adaptation schemes computationally
expensive and not suitable for on-line applications, since
multiple passes through the adaptation data are required.
In this paper we show how incremental versions of the
EM and the segmental k-means algorithm can be used to
improve the convergence of these adaptation methods so
that they can be used in on-line applications.

1. INTRODUCTION

In statistical approaches to continuous speech recognition
(CSR), the model parameters are estimated using sev-
eral hours of speech data with conditions that match as
closely as possible the expected conditions during testing
or �eld deployment. When a mismatch exists, because of
speaker, accent, channel or any other type of variability,
the recognizer parameters must be adapted to the new
conditions. A family of fast adaptation algorithms [1, 5]
for continuous mixture density hidden Markov models
(HMMs) is based on constrained reestimation of the mix-
ture Gaussians. The observation densities of the speaker-
independent (SI) mixture density HMMs have the form:

PSI(xtjst) =

N!X
i=1

p(!ijst)N(xt;mig; Sig); (1)

where N(xt;mig; Sig) denotes the multivariate normal
density with mean vector mig and covariance matrix Sig ,
and g is the index of the Gaussian codebook used by state
st. Then, the speaker-adapted (SA) observation densities
can be obtained from the SI ones by applying the same
a�ne transformation to the means and covariances of all
Gaussians in a particular mixture [1]

PSA(xtjst) =

N!X
i=1

p(!ijst)N(xt;Agmig + bg;AgSigA
T
g );

(2)

where AT denotes the transpose of a matrix. In [5],
the linear constraint is only applied to the means of the
adapted observation densities, which become

PSA(xtjst) =

N!X
i=1

p(!ijst)N(xt;Agmig + bg; Sig): (3)

The algorithms that have previously appeared for the
estimation of the transformation parameters are all batch
adaptation algorithms: all the adaptation data need to be
stored and the parameter estimation step, which is usu-
ally based on the expectation-maximization (EM) algo-
rithm, requires multiple iterations, that is, multiple passes
through the data. The batch nature of these algorithms
limits their use in enrollment-type applications: the user
must record a number of adaptation sentences, and the
system parameters will be adapted o�-line before the user
can see the bene�ts from adaptation.
In contrast, most interesting applications require on-

line, or incremental, adaptation algorithms: the recog-
nizer parameters should be continuously updated after
each sentence, without having to store previous utter-
ances. Using on-line adaptation, the recognition perfor-
mance can improve progressively, as the system is being
used. Moreover, since the adaptation process is continu-
ous, the recognizer has the capability to adapt to changing
conditions. An algorithm is suitable for on-line adapta-
tion when it involves a single pass through the data, it can
be integrated with a speech recognizer easily, and can be
used in unsupervised mode, that is, without knowledge of
what is being said by the user. An incremental version of
the EM algorithm has recently appeared in [6]. The in-
cremental algorithm converges signi�cantly faster than its
batch counterpart, which means that it may be possible to
use a single pass through the adaptation sentences. This
makes the incremental EM algorithm suitable for on-line
applications.
To facilitate the integration with an HMM-based speech

recognizer, it is preferable to use the segmental k-

means training procedure [7], instead of the EM algo-
rithm. This is because Viterbi decoding is the more
widespread search technique in HMM-based speech rec-
ognizers, and k-means training is based on the most-likely
state sequence (MLSS), which is the output of the Viterbi
decoder. To implement on-line adaptation in a speech
recognizer using the k-means training algorithm, we have
developed an incremental variant of this algorithm, anal-
ogous to that of the EM algorithm.

2. INCREMENTAL ML ADAPTATION

The EM algorithm can be used to reestimate the trans-
formation parameters in (2), (3) [1, 5]. The number of re-



quired iterations can be determined by measuring recogni-
tion performance on independent cross-validation set, and
is typically between 5 and 10 iterations. Each iteration
consists of a forward-backward pass through the adapta-
tion sentences, followed by a reestimation step. Hence,
this approach does not conform to the on-line adaptation
requirements.
The incremental version of the EM algorithm has been

shown to speed up convergence of ML training of HMMs
[3], although the recognition performance did not im-
prove. For on-line adaptation, however, faster conver-
gence is critical, and the incremental EM can be used
to achieve it. Both the batch and incremental versions
of the EM algorithm can be derived by viewing the EM
algorithm as jointly maximizing the quantity [6]

F (~P; �) = E~P[log P(X;Sj�)] + H(~P) (4)

over all distributions ~P(S) and parameter sets �, where
X = (X1;X2; : : : ;XN ) represents the multiple observa-
tions, S = (S1; S2; : : : ; SN ) are the corresponding hidden
variables, E~P denotes that the expectation is computed

using the distribution ~P, and H(~P) is the entropy of the
distribution ~P. Assuming independence of observations,
the function F can be written as

F (~P; �) =

NX
i=1

Fi(~Pi; �);

Fi(~Pi; �) = E~Pi
[log P(Xi; Sij�)] + H(~Pi); i = 1; : : : ;N:

The batch and incremental versions of the EM algo-
rithm can be derived by alternating between the maxi-
mizations over the distribution ~P(S) and the parameter
set �. In the incremental algorithm, we perform each E-
step over either a single observation, or a group of observa-
tions at a time, and multiple reestimations (M-steps) are
performed before a single pass through all observations is
completed. In its application to speech, the n-th obser-
vation Xn, and its associated hidden variable Sn, consist
of the set of observations and their associated state and
mixture-mode sequences over a block of utterances (a sub-
set of the total training utterances). When the joint distri-
bution of the observed and hidden variables is a member
of the exponential family, the E-step of the EM algorithm
reduces to computing the su�cient statistics and the M-
step to computing the ML estimates of the parameters
� given these su�cient statistics. If we use t(Xn; Sn) to
denote the su�cient statistics of the n-th observation Xn

and its associated hidden variable Sn, then the k-th it-
eration of the incremental EM algorithm for members of
the exponential family can be written [6]:
Incremental EM algorithm for the exponential

family, k-th iteration:

E-step Select the n-th observation and compute the ex-
pected value of the su�cient statistics

�t(k)n = E~Pn
[t(Xn; Sn)];

where ~Pn(Sn) = P(SnjXn; �
(k�1));

�t(k)j = �t(k�1)j ; j 6= n;

�t(k) =

NX
i=1

�t(k)i = �t(k�1) + �t(k)n � �t(k�1)n :

M-step Set �(k) to that value of � that maximizes the
likelihood of the data given �t(k).

During a single pass through the data a number of it-
erations of the incremental EM are performed. From the
description of the algorithm, we can see that we need to
keep a separate copy of the current value of the su�-
cient statistics for each block of observations. The last
requirement makes the algorithm impractical, unless the
adaptation sentences are subdivided in a small number of
blocks, or a single pass through the data is performed.
In on-line adaptation, we perform a single pass through

the data and the need for separate copies of the su�cient
statistics is eliminated if the initial values for the statis-
tics of each block are set to zero, �t(0)n = 0. The incre-
mental EM simply reduces to accumulating the su�cient
statistics as we would do normally in the batch version of
the algorithm, with the di�erence being that reestimation
(the M-step) is performed multiple times during a single
pass through the data, once after visiting each block of
observations. Each block of observations can be either a
single utterance or multiple utterances.
To use the incremental EM algorithm for on-line adap-

tation with the constrained estimation schemes described
in equations (2) and (3), we must specify the su�cient
statistics. For the �rst method, where the a�ne con-
straint is applied to both the means and covariances of
the mixture Gaussians, the statistics for each block of ob-
servations consist of the following �rst- and second-order
statistics for all multivariate normal densities i of all the
Gaussian codebooks g,

��(k)ig = 1

n
(k)
ig

X
t;st2
�1(g)

�(st)�i(st)xt

��(k)

ig = 1

n
(k)
ig

X
t;st2
�1(g)

�(st)�i(st)(xt � ��(k)ig )(xt � ��(k)ig )T

n
(k)

ig =
X

t;st2
�1(g)

�(st)�i(st);

where the summation is performed over all the frames t
in the block of utterances Xn visited at the current itera-
tion of the algorithm. For simplicity, we have dropped the
dependence on the block index n in the equations of the
su�cient statistics. The quantity �(st) = p(stjXn; �

(k)) is
the probability of being at state st at time t given Xn and
the current parameter estimates �(k), and is computed us-
ing the forward-backward algorithm. The posterior prob-

ability �i(st) = p(!ijA
(k)
g ; b

(k)
g ; xt; st) can be computed

using Bayes's rule. Given these su�cient statistics, the
transformation parameters can be reestimated by solving
the following system of equations [1]:

N!X
i=1

n
(k)

ig

�
A
(k+1)
g � S

�1
ig

h
(A(k+1)

g )�1(��(k)ig � b
(k+1)
g )�mig

i

�(��(k)ig � b
(k+1)
g )T � S

�1
ig (A(k+1)

g )�1 ��(k)

ig

�
= 0

b
(k+1)
g =

hN!X
i=1

n
(k)

ig (A(k+1)
g )�TS�1ig (A(k+1)

g )�1
i�1hN!X

i=1

n
(k)

ig

�(A(k+1)
g )�TS�1ig (A(k+1)

g )�1(��(k)ig � A
(k+1)
g mig)

i
:



This is a system of quadratic equations that are decou-
pled and easy to solve under the assumption of diagonal
covariance matrices.
For the second method (3), where the a�ne constraint

is applied only to the means of the Gaussians, then only
the �rst-order su�cient statistics must be computed. This
should be expected, since this method reestimates only
the means, and not the covariances of the Gaussians. The
reestimation equations (M-step) for the transformation
parameters can be written in this case (adapted from [5]):

N!X
i=1

n
(k)

ig
S
�1
ig ��(k)

ig
v
T
ig =

N!X
i=1

n
(k)

ig
S
�1
ig W

(k+1)
g vigv

T
ig;

where W (k+1)
g = [b(k+1)g jA

(k+1)
g ]; represents the extended

matrix of the a�ne transformation, and vig = [1 mT
ig]

T is
the extended mean vector.

3. INCREMENTAL K-MEANS ADAPTATION

The segmental k-means training algorithm for HMMs [7]
maximizes the joint likelihood of the observations and
the associated hidden state sequences P(X;Sj�), instead
of the maximum likelihood criterion P(Xj�) used in EM
training. The segmental k-means algorithm performs this
optimization iteratively, by alternating between �nding
the MLSS given the current parameter estimates, and ob-
taining new estimates for � by optimizing the joint like-
lihood of the observations and the MLSS found in the
previous step.
The relation between k-means and EM training can be

seen by writing the auxiliary function of the EM algo-
rithm, which is maximized at each iteration to give new
parameter estimates �(k), as

E~P[log P(X;Sj�(k))] =
X
S

~P(S) log P(X;Sj�(k)) (5)

where ~P(S) = P(SjX; �(k�1)). In contrast, the related
auxiliary function for the segmental k-means algorithm is

log P(X; Ŝj�(k))] =
X
S

�(S � Ŝ) log P(X;Sj�(k)) (6)

where �(S � Ŝ) = 1 if S = Ŝ, and 0 otherwise. The un-

observed state sequence Ŝ is the MLSS, Ŝ = S(�(k�1)) =
argmaxS P(X;Sj�(k�1)):
The form of the two auxiliary functions (5) and (6)

leads us, in analogy to the modi�ed view of the EM algo-
rithm presented in [6] and summarized in Section 2., to
introduce the k-means algorithm as maximizing the joint
function

FSKM(~PSKM ; �) = E~PSKM
[log P(X;Sj�)] + H(~PSKM);

(7)
where ~PSKM is restricted to be a delta function,
~PSKM(S) = �(S � Ŝ). In this case, H(~PSKM) = 0, and
the k-means algorithm maximizes

FSKM(~PSKM ; �) =

NX
i=1

Fi;SKM(~Pi;SKM ; �);

Fi;SKM(~Pi;SKM ; �) = E~Pi;SKM
[log P(Xi; Sij�)]

= log P(Xi; Ŝij�); i = 1; : : : ;N;

since the expectation of the function log P(Xi; Sij�) is cal-

culated using the distribution �(Si � Ŝi).
In analogy to the incremental EM algorithm, we can

create an incremental version of the segmental k-means al-
gorithm by inserting one reestimation step after the com-

putation of the MLSS Ŝ
(k)
n of each observation (block of

utterances)Xn. For the exponential family, the segmenta-
tion step of the k-means algorithm reduces to accumulat-
ing the su�cient statistics over the states of the MLSS. As
in the incremental EM algorithm for the exponential fam-
ily, the statistics are maintained incrementally, as shown
below:
Incremental k-means algorithm for the exponen-

tial family, k-th iteration:

Segmentation Select the n-th observation, �nd the cor-
responding MLSS

Ŝ
(k)
n = argmax

Sn

P(Xn; Snj�
(k�1)

and update the su�cient statistics:

�t(k)n = t(Xn; Ŝ
(k)
n );

�t(k)j = �t(k�1)j ; j 6= n;

�t(k) = �t(k�1) + �t(k)n � �t(k�1)n :

Reestimation Set �(k) to that value of � that maximizes
the likelihood of the data given �t(k).

When the incremental k-means algorithm is used for on-
line adaptation with the constrained estimation schemes
(2) and (3), the su�cient statistics are collected over only
the states that belong to the MLSS of the n-th utterance,

��(k)ig = 1

n
(k)
ig

X
st2
�1(g)\Ŝ

(k)
n

�i(st)xt

��(k)

ig = 1

n
(k)
ig

X
st2
�1(g)\Ŝ

(k)
n

�i(st)(xt � ��(k)ig )(xt � ��(k)ig )T

n
(k)

ig =
X

st2
�1(g)\Ŝ
(k)
n

�i(st):

These statistics replace the ones used by the EM-based
on-line adaptation adaptation scheme. Given the new suf-
�cient statistics, the transformation parameters for meth-
ods (2) and (3) can be reestimated using the same reesti-
mation equations used by the incremental EM algorithm
that are given in Section 2..

4. EXPERIMENTAL RESULTS

We evaluated batch and on-line adaptation on the \spoke
3" task of the large-vocabulary Wall Street Journal (WSJ)
corpus [4]. The goal of this task is to improve recognition
performance for nonnative speakers of American English.
Experiments were carried out using SRI's DECIPHERTM

speech recognition system con�gured with a six-feature
front end that outputs 12 cepstral coe�cients, cepstral
energy, and their �rst- and second-order di�erences com-
puted from a fast Fourier transform (FFT) �lterbank.
Cepstral-mean normalization on a sentence basis was per-
formed. We used genonic hidden Markov models with
an arbitrary degree of Gaussian sharing across di�erent
HMM states as described in [2]. The speaker-independent
continuous HMM systems that we used as seed models



for adaptation were gender-dependent. The system for
each gender had 12,000 context-dependent phonetic mod-
els sharing 500 Gaussian codebooks with 32 Gaussians
per codebook. We used the baseline, 5,000-word closed-
vocabulary bigram language model provided by the MIT
Lincoln Laboratory, and the 1994 development set that
consists of 11 speakers. Instead of the 40 standard phonet-
ically rich adaptation sentences, we used 20 WSJ adapta-
tion sentences that are mostly covered by the 5,000-word
language model. We did this because we wanted to com-
pare supervised with unsupervised adaptation, and the
adaptation sentences should be the same in both cases.
The test set consisted of 20 sentences per speaker.

4.1. Batch and Incremental Supervised EM

Adaptation

We �rst compare the batch and incremental versions of
the EM algorithm. The speaker-independent, baseline
word-error rate for this set was 27.4%. The batch EM
adaptation reduces the word-error rate to 17.6% using 5
iterations over the 20 adaptation sentences in supervised
mode, that is, with knowledge of the sentence transcrip-
tions. However, the word-error rate for the batch EM
increased from 17.6% to 18.8% when the number of itera-
tions decreased from 5 to 1. The faster convergence of the
incremental EM regains the performance loss that occurs
when a single pass through the adaptation sentences is
used, and the best performance for a single iteration of
the incremental EM is 17.4% word-error and is achieved
by adapting the parameters (i.e. performing the M-step)
every 4 sentences. The results comparing the performance
of the batch and incremental EM adaptation algorithms
are summarized in Table 1.

Adaptation Algorithm WER (%)
Speaker Independent 27.4
Batch EM, 5 iterations 17.6
Batch EM, 1 iteration 18.8

Incremental EM, 1 iteration
Updating Interval (sentences)

1 17.7
2 17.5
4 17.4
8 18.0
10 18.3

Table 1. Comparison of the batch and incremental

EM adaptation algorithms in supervised mode.

4.2. Unsupervised On-line Adaptation

In CSR systems using Viterbi decoding, the recognizer
actually produces the most likely state sequence (MLSS)
and it is easier to implement on-line adaptation by in-
tegrating k-means adaptation rather than Baum-Welch
(EM) adaptation. Supervised and unsupervised adapta-
tion can be performed by running the recognizer in di�er-
ent modes: in forced-alignment mode, where the recog-
nizer is restricted to produce the MLSS for a given word
string, supervised adaptation can be performed; in recog-
nition mode, where the word string is unknown, the MLSS
of the hypothesized string can be used to perform unsu-
pervised adaptation.
In standard batch unsupervised adaptation, the adap-

tation sentences are recognized using the speaker-
independent models, and the hypothesized strings are

Adaptation Condition WER (%)
Speaker-Independent 27.4
Batch EM, Supervised 17.6

Batch EM, Unsupervised 21.6
Incremental k-means, Unsupervised 19.6

Table 2. Word error rates (%) for various adap-

tation conditions.

used by the batch adaptation algorithm. The recognizer
models are reestimated at the end of the pass through all
the adaptation sentences. The recognition performance
is then evaluated on a separate test set. However, when
we use incremental k-means adaptation, the models are
reestimated more than once during a single pass through
the data. This enables a system to use its more recently
adapted models to extract the MLSSs of the subsequent
adaptation sentences, and improve the quality of these
MLSSs. The word error rates of the speaker-independent
models, of supervised adaptation (a lower bound on the
unsupervised adaptation), the standard batch unsuper-
vised adaptation, and the new incremental k-means un-
supervised scheme are summarized in Table 2. The SI
word error rate of 27.4% drops to 17.6% when supervised
batch adaptation is used over 20 sentences. However,
when the transcriptions of the adaptation sentences are
not available, the unsupervised adaptation gain is smaller,
resulting in a word error rate of 21.6%. The gain of the
incremental k-means adaptation algorithm is signi�cantly
higher, giving a word error of 19.6% by adapting the mod-
els after each sentence.
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