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ABSTRACT

In this paper we are interested in speaker and environment adap-
tation techniques for speaker independent (SI) continuous speech
recognition. These techniques are used to reduce mismatch be-
tween training and the testing conditions, using a small amount of
adaptation data. In addition to reducing this mismatch during the
adaptation, we propose to reduce the variation due to speakers or
environments during the training itself in the context of Speaker
Normalisation (SN) approach, using MLLR transformation. SN
also includes a combination of the context-dependent, phone de-
pendent and broad phonetic class dependent information. The use
of linear regression to model broad phonetic class dependent infor-
mation assures our model to be used in the case that the adaptation
data or training data is not given for some phonetic symbols. SN
is developed for Mixture Stochastic Trajectory Model, a segment
based model. The approach can be used for speaker, gender or en-
vironment normalization. We show the performance of SN com-
pared to SI recognition and to MLLR speaker adaptation, through
experiments on continuous speech recognition.

1. INTRODUCTION

The accuracy of speech recognition systems may degrade signifi-
cantly when they are operated in test conditions that mismatch the
training conditions. The mismatch may be due to changing speaker
characteristics, varying speaker environments, different task con-
straints or a combination of these factors. Compensation of this
mismatch is very important to practical application of recogni-
tion systems in real-world situations. Generally, distorsion ap-
pears as a combination of various acoustic differences and hits
exact form is unknown [6]. In this paper, we are interested in
modelling space representation of mismatch and structure-based
compensation techniques. We assume that the differences between
training and test conditions can be modeled by a linear transfor-
mation in the context of Maximum Likelihood Linear Regression
(MLLR) [7].

Adaptation techniques use a small amount of adaptation data
to reduce this mismatch. For example, in the context of speaker
adaptation, they decrease the difference in performance between
speaker dependent (SD) and SI system. However, such adaptation
techniques only reduce the variation between training and testing
conditions and has no effect on the variation due to speakers or
environments during the training itself. Such variations may give

high overlap among distributions of different speech units.
Recently, some research to reduce this overlap has been pro-

posed. In [2, 3, 8], the model of decoupling speaker variation and
phonetic variation is proposed for continuous density HMM. The
speaker specific variation is modeled by linear transformation in
the same way as in the adaptation techniques. with the difference
that the transformation is integrated in the training process. This
speaker normalization (SN) makes it possible to reduce the vari-
ance and hence the overlap of the acoustic models. In [1], the SN
and the combination of context dependent and context indepen-
dent information provide a new method of the SI training. In [5]
a normalized SI model is generated by removing speaker charac-
teristics during the training using a shift vector obtained by the
MLLR technique. The experimental study of [9] demonstrates that
speaker normalisation continues to be important even after signif-
icant amounts of speaker adaptation.

In this paper, we propose a SN approach for Mixture Stochas-
tic Trajectory Model (MSTM) [4]. Compared to the above ap-
proaches for SN, our technique has several originalities. Firstly,
we use a combination of context-dependent, phone dependent and
broad phonetic class dependent information. It is possible to use
the model when no adaptation data or training data is given for
some phonetic symbols. Secondly, we integrate SN approach in
a segment based model, a Mixture Stochastic Trajectory Model
(MSTM). Finally, for training estimation problem we use EM al-
gorithm and Bayesian estimation for adaptation. Through linear
transformation used for normalization, the approach can be used
for speaker, gender or environment normalization within the con-
text of SI continuous speech recognition. In our implementation
we use supervised batch adaptation, however, the technique can be
extended to unsupervised and online adaptation modes.

The paper is organized as follows. We begin by brief presen-
tation of MSTM and by giving the speaker normalisation model
for MSTM. Next, the training and adaptation parameter estima-
tion are presented in section . Section give the experimental
result for French continuous speech recognition. Finally, section
concludes this paper.

2. SPEAKER NORMALIZATION MODEL FOR MSTM

2.1. Acoustic Model of MSTM

MSTM is a segment-based model using phonemes as speech units
and uses a posteriori distribution as acoustic model [4]. In order to



model durational constraints, an observed segment of duration
for phoneme is rescaled linearly to a fixed-length sequence

:

(1)

The probability density function (pdf) of the fixed-length sequence
is modeled using a mixture of trajectories and is written as:

(2)

where is the probability of trajectory cluster , given
the phoneme and the model . is the set of all trajectory
clusters of phoneme . The probability of the se-
quence given trajectory cluster and phoneme is modelled
by a multivariate Gaussian distribution defined on the whole ob-
servation sequence of and is given by:

(3)

where is a mean vector of dimension , ,
is the dimension of the parameter space and is a co-
variance matrix. In this paper, we use diagonal covariance matrix.
Thus the model parameter set is given by:

(4)

where . A posteriori distribution is used during the
recognition and is given as follows:

(5)

where is the phone duration probability of symbol ,
modeled by Gamma distribution, and is a priori phoneme
probability of . Sentence searching is accomplished by using

in a dynamic programming algorithm. More de-
tails on this search as well as on parameter estimation of acoustic
and duration model can be found in [4].

2.2. Speaker Normalization Model

In this section, we propose to separate the modeling of speaker
variability by integrating the speaker normalization as part of the
MSTM parameter estimation (training) problem. This allows re-
ducing the inter-speaker variability of the training data and gener-
ating a more accurate acoustic model for speaker or environment
adaptation. Such models have lower overlap between the distribu-
tions of different speech units due to their reduced inter-speaker
variability and their potentially smaller variance. We also propose
to combine broad phonetic class information, phone-dependent
and context-dependent information. This allows the reduction of
the overlap between different distributions of speech units.

Assume that the training data consists of speech from different
speaker clusters. The pdf of speech trajectory from speaker
cluster for the phoneme is defined as:

(6)

where is a multivariate Gaussian distribution
with mean and covariance matrix . The basic assumption
is to model as follows:

(7)

where is a linear regression matrix including
an additive bias vector and is a extended mean vector of dimen-
sion . is the broad phonetic class of phoneme , where

and is the number of regression classes.
Index can represent the speaker cluster for speaker normalization,
gender cluster for gender normalization or environment cluster for
environment normalization. If the number of speakers is low, we
can use one speaker per speaker cluster. If the number of speakers
is high, the number of classes is chosen to assure trainability. is
a dimension vector. represents the combination of speaker
specific variation (transformation matrix ) and speaker in-
dependent information that models the phonetic variation ( , ,

).
Our approach is a generalisation of the approach of [1]. Com-

pared to [1], instead of using the combination of context-dependent
( ) and context-independent ( ) information, we use the com-
bination of context-dependent ( , ), phone-dependent ( )
and broad-phonetic class dependent ( ) information. This
allows to reduce the overlap between differents context-dependent
units, the overlap between differents phone units and the overlap
between broad phonetic classes. This model is more flexible than
the [1]’s, because we use the regression matrix that allow
training and adaptation when the adaptation data or training data
are not given for some phonetic symbols for a speaker .

2.3. Training Parameter Estimation

The whole parameter set to be estimated during training is:

where , is the set of phonetic symbols and
is the number of speaker clusters. The parameters are derived
according to the maximum likelihood estimation (MLE) criterion.
The Expectation-Maximization (EM) algorithm is used to perform
MLE estimation. The observed data is

and
missing data is .

The joint estimation of parameters given above is difficult be-
cause of their inter-dependency. We use iterative estimation by op-
timize over one parameter set while keeping the other fixed. This
approach has the advantage of lower computation complexity.

In the following, we give the reestimation formulas for each
parameter for the case of diagonal covariance matrix :

tied linear transformation is obtained by resolving the
systems of linear equations. Each system has

linear equations with unknowns:



where , stands for transpo-
sition operation and is parameter set of previous EM-
iteration;

phone model extended mean vector of dimension
is obtained by resolving a system of linear equations
with unknowns:

where are updated;

speaker independent vector :

where and are updated;

trajectory covariance matrix :

where , are updated and
;

a priori distribution of trajectory component :

where stands for cardinality of set .

2.4. Adaptation Parameter Estimation

For the adaptation, the parameter set to be estimated is ,
where index represent the adaptation speaker and can be omit-
ted. We assume that is a diagonal matrix of dimension

. Since for adaptation the available data may be sparse, we
use Tied MAP Estimation of General Linear Transformation [12].
Bayesian approach provides a convenient method for combining
sample observations and prior information. It may take full ad-
vantage of large amounts of adaptation data, as asymptotically the
estimates converge to speaker-dependent values.

We give the estimation formulas for the case of diagonal trans-
formation with the additive bias. For notational simplicity, we sep-
arate the dimensional problem of -estimation in indepen-
dent problems of one dimensional problems of estimates

, , where is a transformation additive
bias. We assume that the conjugate prior distribution for the uni-
variate Gaussian vector has a normal-gamma prior density. For

each -th estimation problem, the MAP estimate of and is a
solution of the system:

where is a conjugate prior distribution parameter, that can be
adjusted experimentally. We denote:

where , is the -th element of ,
is the -th element of , is the -th element of adaptation

data , is the -th element of and is the -th element of

a vector defined as follow:

3. EXPERIMETS AND RESULTS

3.1. Experimental conditions

Experiments deal with a French continuous speech corpus recorded
by the CRIN/INRIA laboratory. For training, phonetically rich
sentences were read by French speakers (1 female). On the aver-
age, there are about observations per phoneme for each speaker.
For testing, sentences were recorded for each speaker. There
is only a small overlap between training and test vocabularies. The
observation vectors are MFCC including a normalized energy.
For this corpus, context-independent phone models, including
one silence model, are built. The language model has a word-pair
equivalent perplexity of and a words vocabulary. In all
experiments, the covariance matrix is assumed to be diagonal. The
training is performed with the speech of speakers and testing
with the speech of the -th speaker. For speaker classification we
used ascendent speaker classification with the distance measure
TR2 of [10]. The number of speaker clusters is ( ). We use

regression classes: one for vowels, one for silence symbol and
one for all other phonemes. For adaptation, sentences (about
seconds of speech) is used. We use supervised batch adaptation.

3.2. Results

Figure 1 give the results of approaches in term of word error rate
(WER): SI speech recognition, Maximum Likelihood Linear Re-
gression adaptation (MLLR) [11] (MLLR is used only during the
adaptation), SN training and adaptation (SNT) with MLE ( )
and SNT with MAP ( ). The parameter is adjusted ex-
perimentally. The best result is obtained with SNT with MAP ap-
proach, using about pdfs. This represents reduction in
error rate compared to SI recognition, error reduction com-
pared to MMLR approach and reduction compared to SNT
with MLE approach with the same number of pdf for all approach.
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Figure 1: Word Error Rate ( ) as function of number of pdfs and
the approach

4. CONCLUSION

In this paper, we have reported an extension of the work in speaker
or environment adaptative training for SI continuous speech recog-
nition. We have proposed a speaker normalization training for the
Mixture Stochastic Trajectory Model. Using speaker-dependent
transformation and speaker-independent mean and variance (Eq-
7), the approach models separately the speaker (or environment)
variation and phonetic variation, and therefore reduces the distri-
bution overlap between SI models of differents speech units. The
model can be used in the case where, for some phonetic units,
the adaptation or training data are not given. During the training,
the parameters of the model are estimated according to the MLE
criterion, and during the supervised batch adaptation according to
Bayesian estimation. The results show that the new acoustic mod-
els give more efficient mismatch reduction between training and
the testing conditions than SI recognition or MLLR adaptation ap-
proach.

Out future work includes evaluating the technique to environ-
ment and gender normalisation, and integrating SN approach in the
context of unsupervised adaptation and incremental adaptation.
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