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ABSTRACT

Speaker Adaptive Training (SAT) has been investigated
for mixture density estimation and applied to large vo-
cabulary continuous speech recognition. SAT integrates
MLLR adaptation in the HMM training and aims at re-
ducing inter-speaker variability to get enhanced speaker-
independent models. Starting from BBN's work on com-
pact models, we derive a one-pass Viterbi formulation of
SAT that performs joint estimation of MLLR-based trans-
formations and density parameters. The computational
complexity is analyzed and an approximation based on
using inverse a�ne transformations is discussed.

Compared to applying MLLR on standard SI models,
our experimental results achieve lower error rates as well
as reduced decoding costs, for both supervised batch and
unsupervised incremental adaptation. In the latter case,
it is shown that the enrollment of a new speaker can be
sped up by selecting among the transformations that were
estimated from the training speakers, the one that best
�ts with the �rst test utterance.

1. INTRODUCTION

With the achievement of e�ective speaker adaptation tech-
niques based on transformation methods, there has been
a growing interest for applying similar techniques in train-
ing, to the speakers that are used for constructing speaker-
independent (SI) acoustic models [2, 4, 5, 9, 10, 11].

As a matter of fact, the standard way of training
SI models is to estimate the acoustic parameters from
the \raw" speech of a large population of speakers and
this leads to models with broad distributions requiring a
large number of (typically) mixture densities. However,
this does not necessarily provide the best acoustic models
for a recognition system that includes a particular adap-
tation technique aimed at achieving speaker-dependent
(SD) performances as fast as possible.

The motivation for normalizing the training speakers
is to get rid of some of the inter-speaker variability so that
the resulting SI models are more focussed on the pho-
netically relevant variation sources. Hence, they should
exhibit sharper distributions with reduced variances and
might be better suited for fast and accurate adaptation
towards speaker-dependent models.
So far, two distinct ways to speaker normalization have
been mainly considered. The �rst approach belongs to
Vocal Tract Normalization (VTN) techniques and com-
pensates for variations in vocal tract length by means of
a (linear) warping of the frequency axis in the speech pa-
rameterization front-end (see a.o. [3] [10]).
The second avenue, which we are concerned with in this
work, performs model adaptation using a�ne transforma-
tions of the density means. These transformations can be

e�ciently computed by the maximum likelihood linear re-
gression (MLLR) algorithm [1] and have been shown to
capture speaker speci�c characteristics reasonably well.

This leads to the so-called Speaker Adaptive Train-
ing (SAT) method recently introduced by Anastasakos
et al. [5], where the parameters of both MLLR-based
transformations and HMM mixture densities are jointly

estimated in a uni�ed maximum likelihood (ML) frame-
work. As shown in [8], the resulting mixture distributions
have markedly reduced variances compared to standard SI
models. This raises the question of how these SAT mod-
els could be best used for decoding. So far, the most suc-
cessful results have been obtained under supervised batch
adaptation by combining the SAT models with MLLR-
based transformations dedicated to the test speakers [5]
[8] [10] [11]. This is not surprising as it allows to match
the training conditions quite well via supervised MLLR
estimation. However, for unsupervised incremental adap-
tation, a situation of clear practical interest, the SAT
HMMs alone might not supply an ideal starting point.
Indeed, in some cases at least, it appears that they per-
form worse than standard SI models. This suggests that
we might take advantage of the transformations jointly
estimated during training to get better initial models for
a new speaker. We have addressed this possibility and
our results indicate that the enrollment of a new speaker
can be sped up by selecting among the transformations
estimated from the training speakers, the one that best
�ts with the �rst test utterance.

In this paper, we �rst review the SAT equations, give
a simple interpretation of the mean re-estimation formula
and discuss an approximation based on using inverse a�ne
transformations. Next, we address the computational is-
sues and present our Viterbi SAT implementation. De-
velopment results are then presented under supervised
adaptation to study the inuence of regression class num-
bers and of approximating the SAT mean re-estimation.
In the last section devoted to unsupervised adaptation,
we present our �rst attempt upon using in decoding the
MLLR transforms that were estimated during training,
and give several experimental results.

2. JOINT ESTIMATION OF MLLR AND

MIXTURE DENSITY PARAMETERS

In the sequel, we will associate index r = 1; :::;R with the
training speakers, index g = 1; :::;G with the MLLR re-
gression classes and k = 1; :::;K with the mixture density
components. The MLLR-based a�ne transformations are
speaker-dependent and consist of full (d�d) matrices Ar;g

and d-dimensional o�set vectors br;g . Each mixture com-
ponent k is a Gaussian distribution p(otjk) � N (�k;�k),
ot being the observation vector at time t, �k and �k be-
ing the mean vector and the (diagonal) covariance matrix.



For notational convenience, each speaker r is assumed to
have produced a single utterance of length T (r).

The basic idea underlying SAT is that the characteris-
tics of each training speaker are carried by a set of linear
transformations mapping the SI means on the speaker-
speci�c acoustic domain and the estimation of these trans-
formation parameters is embedded in the mixture density
HMM training. This leads to a ML formulation for jointly
estimating three sets of parameters, namely, the a�ne
transformations, the mixture density means and their co-
variances. Following the EM principle, optimal values can
be iteratively searched for by updating each parameter set
while holding the two others �xed, as proposed in [5]. We
now describe the complete SAT system of equations that
has been considered in this study.

First, the SI means are adapted to a particular speaker
r using a set of a�ne transformations according to :

�
r si
k = Ar;g � �

si
k + br;g (1)

where g is the regression class of density k and r si indi-
cates adaptation from a speaker-independent estimation.
When using the Viterbi criterion and a globally pooled
covariance in the acoustic modeling, the MLLR estima-
tion simpli�es to a least mean square (LMS) approach [1]
and the a�ne transformations can be computed by
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is taken over the observations ort coming

from speaker r that are assigned by Viterbi alignment to
a density kt belonging to regression class g. The vector
~�kt stands for the augmented SI mean vector [1; (�sikt )

T ]T .
This LMS version of MLLR has been successfully evalu-
ated in [7] for a variety of speaker adaptation scenarios.

Second, the functional SAT model of speaker normal-
ization can be expressed for a given density k using (1) as
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k ;�k) (3)

and leads to the SAT re-estimation of the means [5]:
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where crk is the \count" of observations from speaker r
that are assigned to density k and �̂rk is the speaker-
dependent mean vector obtained from
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rk(t) being the posterior probability of density k for speaker
r at time t. For Viterbi training, it takes the values 0or1.

Third, the covariance matrices are re-estimated using
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A simple interpretation of (4) can be gained by observing
how the normal probability distribution is modi�ed when
the mean is subjected to an a�ne transformation as in (3).
After straightforward algebraic manipulations we get:
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the proportionality factor being the determinant jAr;g j.
De�ning the potential matrices (i.e. inverse covariances)
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equation (4) can now be directly re-written as
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Hence, the SAT re-estimation of the means appears as a
weighted average of the inverse a�ne transformation ap-
plied to the SD means �̂rk, the weights being the potential
matrices Sk(r; g) of the corresponding distributions when
\moved back" to the SI acoustic space.

This suggests an (obvious) approximation: if the de-
pendence of the potential matrices Sk(r; g) on the speaker
r is neglected, then the matrix weights cancel out and this
provides a simpli�ed SAT mean re-estimation formula :
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This alternative named the \inverse transform SAT" has
been investigated in [6] and also applied in [11]. Note that
(10) requires the direct inversion of Ar;g which might be
ill-conditioned whereas in (4) it is a weighted sum of sym-
metric matrices from all speakers that has to be inverted.

3. COMPUTATIONAL REQUIREMENTS

AND PRACTICAL IMPLEMENTATION

In this section, we assume that the training utterances
have been partitioned according to speaker and that each
speaker has uttered at least a few minutes of speech to
allow a robust estimation of MLLR transformations.

Beside the organization of training data, SAT intro-
duces two main additional requirements with respect to
standard HMM training. First, the MLLR algorithm has
to be integrated implying some (manageable) overhead in
storage and calculations, essentially matrix products and
inversions. Second, the (exact) mean re-estimation leads
to a considerable increase of both memory and CPU needs
due to the presence of matrix weights in the \denomina-
tor" of (4) precluding from a straightforward implemen-
tation. Indeed, the storage volume required for accumu-
lating these matrix counts over the speakers is Kd2 (4
bytes) elements and since K (the total number of mix-
ture densities) is typically in the range 2 � 104 ! 2 � 105,
this leads to a memory space of 0:1 ! 1:0 GigaByte, for
d = 35. As this appears rather prohibitive, another imple-
mentation consists in storing, after each speaker has been
processed, the SD counts crk in addition to the MLLR ma-
trices Ar;g . The denominator is \synthesized" afterwards
for each density k by summing up over the speakers ac-
cording to
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However, this introduces a (strong) dependence on the
number of speakers R due to the storage of the SD counts
requesting 2RK bytes 1. Storing the MLLR transforms
requires 4RGd(d+ 1) bytes which can be more easily ac-
commodated for, even for a large number of speakers (for
1000 speakers and 20 regression classes per speaker this
amounts to about 100 MegaBytes). Nevertheless, as long
as there are not more than a few hundred training speak-
ers, this SAT implementation can be made relatively fast
and exible on a common workstation.
Concerning the re-estimation of the variances using (6),

1Note that these counts being sparse, they can be strongly

compressed using a list organization



a whole SAT cycle can be easily performed in a single-
pass if the previous updates of the SI means are combined
with the latest MLLR updates to get the speaker-adapted
means �̂r si

k . This keeps the overhead at a minimum
without seriously slowing down the convergence.

Here follow the main steps of our one-pass SAT algorithm.
Seed values for the mixture parameters come from stan-
dard SI estimations and initial MLLR transforms are com-
puted with (2) during a preliminary pass through all train-
ing speakers' data. This provides (�̂sik )

0 and A0
r;g ;b

0
r;g.

Each SAT iteration (indexed by i) proceeds in two parts:

� For each training speaker r = 1; :::;R ,

1. Transform SI means (�̂sik )
i�1 with Ai�1

r;g ;b
i�1
r;g

2. Perform Viterbi alignment using �r si
k to get

the SD counts (crk)
i and SD mean vectors �̂rk

3. Compute new transformations Ai
r;g ;b

i
r;g

4. Accumulate the numerators of (4) and (6) for
each observed density k (in 1-D arrays)

5. Store the SD counts (crk)
i with Ai

r;g and b
i
r;g

� For each mixture density k = 1; :::;K ,

1. Compute \denominator" Dk (11) and invert
2. Introduce in (4) to get updated means (�̂sik )

i

3. Normalize variances and mixt. weights as usual

When appling the \inverse transform SAT" (10), the ma-
trices Ai

r;g are directly inverted in step 3 (possibly with
some smoothing [6]) and the numerator of (10) is accumu-
lated accordingly. There is no need for storing SD counts
as the denominator now consists of standard SI counts.

4. DEVELOPMENT RESULTS FOR

SUPERVISED BATCH ADAPTATION

First, the inuence of several factors acting on the SAT
estimation has been studied using WSJ0 training data
and the ARPA Spoke 0 test-set of Nov'94 evaluation (20
speakers, 425 sentences, 7135 words). The base system
has 3,326 tied states each with 32 mixture components.
Supervised adaptation has been performed on 40 enroll-
ment sentences per speaker using 43 phonetically derived
regression classes [7]. Table 1 summarizes the results ob-
tained with 84 training speakers, each with �10' speech.

Table 1: Development for Supervised Batch Adaptation,
Training on WSJ0, Test on Spoke 0, 5K Bigram

Estimation TRN Statist. No Ada Sup. Batch Adapt.
of mixtures Log-Lik. Var. WER WER #Hyp. Gain

STD SI-84 29,728 .474 10.3% 8.8% 9.1k -14.7%

SAT Uni 28,988 .448 10.8% 8.1% 6.9k -25.4%
SAT Mul 28,225 .422 10.9% 8.0% 5.9k -26.1%
SAT Mul-l 27,958 .414 11.7% 7.9% 5.4k -32.5%
SAT Mul-v 28,324 .474 11.0% 8.1% 8.0k -26.3%

Five estimation strategies have been considered, the �rst
being standard SI training. SAT has been applied ei-
ther with one single transform per speaker ('Uni') or with
dynamically de�ned multiple regressions ('Mul'). Three
SAT cycles have been performed except for the third case
('Mul-l') where seven iterations were done. The second
column gives the (scaled) log-likelihood value achieved on
the training data. The third column is the variance value
averaged over all densities and dimensions. In the last
case ('Mul-v'), the initial variances have been kept �xed,
only the means being re-estimated. The word error rates
(WER) are given without and after (supervised) adapta-
tion. A measure of the decoding search cost is given by
the average number of active hypotheses ('#Hyp.').

The following observations can be made :

� When more transformations as well as more SAT
cycles are considered, the models show a better �t
on the training data and reduced variances.

� Using SAT models \as such" without adaptation
provides (increasingly) degraded results.

� The relative gains of supervised adaptation are about
twice larger for the SAT models, thus entirely com-
pensating for the worse \starting point".

� Combined with adaptation, SAT models achieve
a relative improvement of 8% to 10% versus the
speaker-adapted standard models.

� The search cost is reduced by as much as 40% using
SAT, except for the last case with \�xed" variances.

The impact of the \inverse transform" approximation (10)
is shown in table 2 hereunder, as opposed to the \exact"
SAT formulation (4) for the mean re-estimation.

Table 2: Comparison of exact and inverse-transform SAT
on S0 with Supervised Batch Adaptation

Estimation of Log-Lik. WER WER
SAT Means on TRN No Ada Sup. Ada

Uni Exact 28,988 10.82% 8.07%
Uni Approx 29,020 10.71% 8.13%

Mul Exact 28,225 10.87% 8.03%
Mul Approx 28,358 11.31% 8.37%

When using a single transformation ('Uni'), there are no
signi�cant di�erences. However, for multiple MLLRs there
is a larger degradation mainly due, presumably, to the in-
accurate inversions of some (non-smoothed) matrices.
Next, gender-dependent SAT models have been trained
on WSJ0+1, using resp. 142 females and 142 males. Re-
sults on S0 are presented for supervised batch adaptation
again, using a bigram or a trigram language model (LM).

Table 3: Word Error Rate (%) on Spoke 0 for Bigram
WSJ0+1 Training with Supervised Adaptation

142F/142M TRN No Ada SUP. Ada Rel. Gain

STD Models 7.71% 6.69% -13.3%
SAT Models 7.93% 6.15% -22.4%
Rel. Change +2.9% -8.1% -

Table 4: Word Error Rate (%) on Spoke 0 for Trigram
WSJ0+1 Training with Supervised Adaptation

142F/142M TRN No Ada SUP. Ada Rel. Gain
STD Models 6.14% 5.16% -16.0%
SAT Models 6.22% 4.72% -24.1%

Rel. Change +1.4% -8.4% -

For both LMs, a signi�cant improvement of about 8%
can be observed in tables 3 and 4, in spite of a slightly
degraded \starting-point" without adaptation.

5. EXTENSION TO UNSUPERVISED

INCREMENTAL ADAPTATION

As shown in the previous section, SAT models as such
do not produce better results than standard ones and
might even perform worse in some cases [8], unless they
are (carefully) adapted to the test speaker. This can be a
problem when applying unsupervised incremental adap-
tation (UIA). This led us to consider the possibility of
exploiting the transformations jointly estimated during
training to get better initial models for a new speaker.



The following algorithm suggested by ML estimation prin-
ciples, has been designed much alike the selection of fre-
quency warpings is accomplished in VTN techniques [3].
Given some (unknown) utterances of a new speaker:

1. Decode using the non adapted SAT models

2. For each speaker r considered during training:
� Transform the SI means with Ar;g ;br;g

� Compute the likelihood of the decoded words

� Select speaker r� achieving the best likelihood

3. Transform the SI means using Ar� ;g;br�;g

4. Proceed further using the transformed SAT models

To get fast unsupervised enrollment, this algorithm has
been applied to just the �rst utterance and to be more
robust against decoding errors, a single transformation
has been considered per training speaker (G=1). Table 5
gives the S0 results using the same models as in table 3.

Table 5: Unsupervised Incremental Adaptation on S0
WSJ0+1 Training and Bigram LM

ESTIMATION WER WER Relat.
of Mixtures No Ada Uns. Ada Gain

STD SI-142F/M 7.71% 6.91% -10.4%

SAT Models alone 7.93% 6.28% -20.7%
SAT+Glob.Transf. 7.47% 6.15% -17.6%

This leads to the following comments :

� On this set, SAT models alone perform better by
9% when undergoing UIA after each sentence.

� Using the global transform from a training speaker
that best �ts with the �rst utterance, we get an
improvement of 3:1% without further adaptation.

� Combined with UIA another (slight) gain of 2% is
observed and the total gain is 11% w.r. to 6:91%.

The same experiment has been run on the development set
of Nov'92 (10 speakers, 410 sentences). Table 6 gives the
main �gures obtained with WSJ0 models. Using training
transforms reduces SAT errors without adaptation and
leads to a gain of 5% with UIA, from 6:86% to 6:53%.

Table 6: Unsupervised Incremental Adaptation on Dev
WSJ0 Training 'SAT Mul-l' and Bigram LM

ESTIMATION WER WER Relat.
of Mixtures No Ada Uns. Ada Gain

STD SI-84 8.08% 6.86% -15.1%

SAT Models alone 8.66% 6.62% -23.5%
SAT+Glob.Transf. 8.14% 6.53% -19.7%

Another question of interest concerns the improvements
that can be achieved \asymptotically" with SAT models
versus standard ones, after a large amount of speech has
been processed. Therefore, we did the same experiments
on the Spoke 4 test-set. This includes four US native
speakers, each one having uttered 100 sentences (about
12' speech) instead of only 20 for Spoke 0. Word error
rates have been computed separately for the 50 �rst and
last sentences. Table 7 summarizes the results.

Table 7: Unsupervised Incremental Adaptation on S4
Word Error Rate for 50 �rst & last Sentences

ESTIMATION Uns. Ada Uns. Ada Uns. Ada
of Mixtures Snt 1!100 Snt 1!50 Snt 51!100

STD SI-142F/M 9.49% 10.37% 8.63%
SAT+Glob.Transf. 9.00% 9.54% 8.45%

Relative Change -5.2% -8.0% -2.0%

It appears that the overall gain of 5:2% observed after 100
sentences is largely obtained on the �rst 50 sentences (8%
improvement) while the last 50 contribute only marginally
for 2%. This seems to indicate that SAT is particularly
well suited for getting faster enrollment of new speakers.

6. CONCLUSION

Generally speaking, for supervised adaptation our results
underline those reported in [5] and [8]. For unsupervised
adaptation, we have shown that the enrollment of a new
speaker can be sped up by selecting among the trans-
formations estimated from the training speakers, the one
that best �ts with the �rst test utterance. More extensive
tests are needed however, especially to study the inuence
of a mismatch between training and testing conditions, for
example when a di�erent acoustic channel is used or when
the test speakers are non-native. On the other hand, MAP
adaptation has been deliberately disabled in this study to
be consistent with SAT estimation, although it has proven
to combine very well with MLLR adaptation for standard
SI models [7].
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