COMBINED ON-LINE MODEL ADAPTATION AND BAYESIAN
PREDICTIVE CLASSIFICATION FOR ROBUST SPEECH RECOGNITION

Qiang Huo]L and Chin-Huz Lee1

TATR Interpreting Telecommunications Research Labs., 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan
1Multimedia Communications Research Lab, Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, USA

ABSTRACT

In this paper, we study a class of robust automatic speech
recognition problem in which mismatches between train-
ing and testing conditions exist but an accurate knowledge
of the mismatch mechanism is unknown. The only avail-
able information is the test data along with a set of pre-
trained speech models and the decision parameters. We
try to compensate for the abovementioned mismatches by
jointly adopting a dynamic system design strategy called
on-line Bayesian adaptation to incrementally improve the
estimation of the model parameters used in the recognizer,
and a robust decision strategy called Bayesian predictive
classification to average over the remaining uncertainty in
model parameters. We report on a series of experimen-
tal results to show the viability and effectiveness of the
proposed method.

1. INTRODUCTION

In the last two decades, much advance has been achieved
in the area of automatic speech recognition (ASR). This is
largely attributed to the use of a powerful statistical pat-
tern recognition paradigm and the application of dynamic
programming search over a structural network representa-
tion of acoustic and linguistic knowledge sources. For this
approach, let’s view a word W and the associated acous-
tic observation X (usually, a feature vector sequence) as
a jointly distributed random pair (W, X). Depend on the
problem of interest, word here could be any linguistic
unit, such as a phoneme, a syllable, a word, a phrase,
etc. Suppose the true joint distribution of (W, X) could
be modeled by a true parametric family of PDF (prob-
ability density function) p(W,X) = pa(X|W) - pr(W),
where pa (X|W) is known as acoustic model with param-
eters A and pr(W) as language model with parameters
I'. Further suppose we have the full knowledge of the
parameters (A,I') of the above distributions. Then, an
optimal decoder (speech recognizer) which achieves the
expected minimum word recognition error rate is the fol-
lowing MAP (maximum a posteriori) decoder:

W = argmax p(W|X) = argmax pa (X[W) - pr (W) (1)

where X is the observation and W is the recognition
result. However, in practice, neither do we know the
true parametric form of p(W,X), nor its true parameters.
Therefore, the above optimal speech recognizer will never
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be achievable, but we can only approximate it. A sim-
ple heuristic solution is first to assume some parametric
form for p(W,X) and then to estimate its parameters from
some training data by using some parameter estimation
techniques (e.g., maximum likelihood (ML), MAP, dis-
criminative training, etc.). Then, we plug in the estimate
(/~\,I~‘) into the optimal but unavailable rule in equation
(1) in place of the correct but unknown (A, I') to obtain
a plug in MAP rule. The performance of any such non-
conservative rule depends on the accuracy of the model
assumptions, the choice of parameter estimation meth-
ods, the nature and size of the training data, the nature
and degree of the mismatch between training and testing
conditions which may arise from inter- and intra- speaker
variabilities, transducer, channel and other environmen-
tal variabilities; and many other phonetic and linguistic
effects due to a task mismatch problem. It is the suscep-
tibility of current ASR systems to even moderate acoustic
mismatches that prevents the widespread deployment of
the ASR systems in those applications where they can
be most useful. Robust speech recognition in this con-
text thus refers to the problem of designing an automatic
speech recognizer that works well for different tasks and
speakers over a wide range of unexpected and possibly
adverse conditions.

There has been a great deal of effort aiming at im-
proving speech recognition and hence enhancing perfor-
mance robustness in the abovementioned mismatches. In
the past few years, we have been adopting a Bayesian
paradigm to address and formulate a class of robust speech
recognition problem in which mismatches between train-
ing and testing conditions exist, but an accurate knowl-
edge of the mismatch mechanism is unknown. The only
available information is the test data along with a set of
pre-trained speech models and the decision parameters.
We’ve developed two sets of Bayesian techniques to cope
with the acoustic mismatch problem for Gaussian mix-
ture continuous density hidden Markov model (CDHMM)
based speech recognition. The first type of algorithms are
targeting those applications involving a recognition ses-
sion which might consist of a number of testing utterances.
Unlike those ASR systems which rely on a static design
strategy that all the knowledge sources needed in a system
are acquired at the design phase and remain fixed during
use, we adopt a dynamic system design strategy where
the new knowledge is acquired dynamically. New infor-
mation is constantly collected during development and
use of the ASR system, and is incorporated into the sys-
tem using an adaptive learning algorithm, namely on-line
Bayesian adaptive learning of the HMM parameters [1, 2].
For the second type of techniques, by modifying directly



the above plug-in MAP decision rule, we’ve developed a
new robust decision strategy called Bayesian predictive
classification (BPC) approach [3] so that part of the mis-
match can be compensated and the decision performance
can be improved.

The robustness of the ASR system can be further en-
hanced by integrating on-line adaptation of model param-
eters with BPC-based decoding. This is exactly what we
want to present in this paper. The technical details of each
component technique can already be found in [1, 2, 3]. In
the remainder of the paper, we first give a summary of
the basic principle of the algorithms and then report a
series of experimental results to show the viability and
effectiveness of the proposed method.

2. DYNAMIC SYSTEM DESIGN STRATEGY:
ON-LINE BAYESIAN ADAPTATION

For this approach, we assume that our initial knowledge
about HMM parameters A is contained in and represented
by a known joint a priori PDF p(A|go(0)) with hyperpa-
rameters 99(0). Starting from this, when speech utterances
X1, Az, - - successively become available, repeated use of
the following equation:

n (n Xn|A) - p(A]X, H0 1)
p(ALAT ") = p(Aa12) - p(4] o= @(n_l)) (2)
Jo p(Xn]A) - p(AJX] T p(n=D)dA

produces the sequence of densities p(A| X7, go(l)), p(A|AE,
99(2)), and so forth, where A7 = {X1, A2, - -, Xy} denotes
n sets of independently obtained speech utterances, and
p(Xn|A)is the likelihood function. This provides a basis of
making formal recursive Bayesian inference of parameters
A and thus a good solution for on-line HMM adaptation.
However, there are some serious computational difficul-
ties to directly implement this learning procedure. Con-
sequently, some approximations are needed in practice.
We’ve presented several solutions, e.g., [1, 2], in which
we also show that the system performance can be con-
sistently improved by using a plug-in M AP decision rule
for recognition and on-line adaptation (OLA) for HMM
parameter compensation.

3. ROBUST DECISION STRATEGY:
BAYESIAN PREDICTIVE CLASSIFICATION

As noted before, the conventional plug-in MAP decision
rule is known to achieve an optimal Bayes decision only
if the assumed models and parameters of the rule were
correct. Although OLA can continuously make the model
parameters match the coming data, in the early stages of
the OLA, the model parameters will not be good enough
to warrant plug-in MAP rule a good performance, if severe
mismatch exists initially. This motivates us to modify di-
rectly the plug-in MAP decision rule and develop a new
robust decision strategy called BPC [3]. The crucial dif-
ference between the plug-in and predictive classifiers is
that the former acts as if the estimated model parameters
were the true ones whereas predictive methods average
over the uncertainty in parameters. More specifically, like
in OLA, we use a prior PDF p(Alg) with hyperparame-
ters ¢ to represent our knowledge about the uncertainty
of the unknown parameters A. An optimal Bayes solution
is to choose a speech recognizer which minimizes the over-
all recognition error when the average is taken both with
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Figure 1: A block diagram of a robust HMM-based speech
recognition system

respect to the sampling variation in the expected test-
ing data and with respect to the uncertainty described by
the prior distribution. Suppose only acoustic models are
adjusted. Such a BPC rule is operated as follows:

W = argmax p(W[X) = argmax p(X[W) - pr (W)~ (3)
where
HX ) = / XA WAl W)dA (1)

is called the predictive PDF of the observation X given
the word W. Once again, for HMM, we have no closed
form solution for the computation of this predictive PDF
and some approximations are needed. We’ve developed
several approximation procedures. Omne of them called
quasi- Bayesian predictive classification (QBPC). We have
shown in [3] that by using the QBPC alone (no OLA), we
can improve the recognition performance in comparison
with the plug-in MAP decision rule when mismatches be-
tween training and testing conditions exist.

4. COMBINED ON-LINE MODEL
ADAPTATION AND BAYESIAN
PREDICTIVE CLASSIFICATION

Because both OLA and BPC are formulated under a uni-
fied Bayesian paradigm to address respectively the model
parameter inference problem and the decision problem,
they can be seamlessly combined to produce an enhanced
algorithm to cope with the robust ASR problem as de-
scribed in the introduction section. Such a robust ASR
system is schematically shown in Figure 1. Given a new
block of input speech, feature extraction (usually spec-
tral analysis) is first performed to derive the feature vec-
tor sequences used to characterize the speech input. It
is followed by some kind of acoustic normalization to re-
duce the possible mismatch in the feature vector space.
The processed feature vector sequences are then recog-
nized based on the current set of HMMs by using BPC
approach. After the recognition of the current block of ut-
terances, the HMMs and the posterior distributions of the
related speech units are adapted and the updated mod-
els are used to recognize future input utterance(s). In
this way, we can get a better and better posterior/prior
PDF (i.e., more and more accurate knowledge about the
uncertainty of the model parameters), and this in turn
makes the BPC-based recognition system approach a per-

formance achieved by the plug-in MAP rule under a matched

condition.



5. EXPERIMENTS AND RESULTS

5.1. Experimental Setup

Two sets of speech recognition experiments are designed
to examine the viability of the proposed combined OLA
and BPC method where we use the quasi-Bayes method
as described in [1] for on-line adaptation of the indepen-
dent CDHMMs and the QBPC method in [3] for recogni-
tion. The first set of experiments is the recognition of 26
English letters which are highly confusable and their dis-
crimination is weak even without mismatch. Two severely
mismatched databases namely the OGI ISOLET and T146
corpora were used [1]. For speaker independent (SI) train-
ing and initial prior density estimation of CDHMMs, the
OGI ISOLET database produced by 150 speakers was
used. For on-line condition & speaker adaptation and
testing, the alphabet subset of the TT46 isolated word
corpus produced by 16 speakers was used. Each person
utters each of the letters 26 times. Among them, 8 to-
kens were used for adaptation and another 8 for testing.
Due to the strong mismatch between the training and
testing databases, we are effectively considering the gen-
eral mismatch conditions of those in speaker, transducer,
recording environments and conditions, sampling rate and
quantization resolution, etc. For the second set of experi-
ments, task is the recognition of 20 less confusable English
words which include 10 digits and 10 commands namely
enter, erase, go, help, no, rubout, repeat, stop, start, yes.
20 English words subset (TI20) of the TI46 corpus was
used. We train 2 sets of gender-dependent models (both
CDHMMs and their initial prior PDFs) from 8 female
and 8 male speakers by using about 10 training tokens
per word for each speaker. We then perform cross-gender
on-line speaker adaptation and testing. For each speaker,
we have about 10 tokens per word for OLA and 16 tokens
per word for testing.

Throughout the following experiments, each word is
modeled by a left-to-right 5-state CDHMM with arbi-
trary state skipping and each state has 4 Gaussian mix-
ture components with diagonal covariance matrices. The
speech data in both corpora are down-sampled to 8 KHz.
Each feature vector consists of 12 LPC-derived cepstral
coefficients and utterance-based cepstral mean subtrac-
tion (CMS) is applied for acoustic normalization both in
training and testing. The initial hyperparameters are esti-
mated by using the method described in [1] where we nor-
malize the importance of the initial prior knowledge to be
comparable with the contribution from a single training
token. Note that in this study, although we consider the
uncertainty of all CDHMM parameters for OLA, we only
consider, for QBPC, the uncertainty of the mean vectors
of CDHMMs which is characterized by a set of Gaussian
PDFs. Also note that all of the OLA experiments are
performed in a supervised mode.

5.2. English Letter Recognition Results

Figure 2 shows the performance comparison averaged over
8 female speakers on English letter recognition task as a
function of total number of OLA tokens (e.g., 26 means
for every vocabulary word, we have one adaptation to-
ken) among several methods. Without any compensa-
tion, as expected, the cross-condition SI recognition rate
is very low. With OLA and conventional plug-in MAP
decoding (denoted as “Plug-in-MAP+OLA”), the perfor-

mance is continuously improved with increasing amount
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Figure 2: Performance (word accuracy in %) comparison
averaged over 8 female speakers on English letter recog-
nition task as a function of amount of adaptation data
among methods by combining on-line adaptation with
plug-in MAP decoding and QBPC decoding (3 EM itera-
tions for both on-line adaptation and QBPC decoding)

of adaptation data. By combing OLA with QBPC decod-
ing, the performance is further improved before certain
point where a good enough model parameter estimation
warrants the plug-MAP decision to surpass QBPC.

5.3. Experimental Results on TI20

Similar to Figure 2, Figure 3 shows the performance com-
parison averaged over 8 female speakers on TI20 task as
a function of total number of OLA tokens among several
methods. The similar facts as the above are also observed
here. In QBPC decoding, we can further set the refresh-
ing coeflicient rf (see [1, 3] for the explanation) of the
hyperparameters to control the degree of the uncertainty
of the CDHMM parameters. So, in this figure, we also
compare the effect of different rf values on the QBPC
performance. The experimental results show that in a
reasonably wide range of values of the control parameters
(rf), the QBPC method works equally well, thus suggests
that the manual tunning is not crucial.

In Figure 4, we further compare the performance of
the QBPC algorithm with a modified minimax decoding
method with different EM iterations (see [3] for the expla-
nation). The experimental results show that the QBPC
performs much better than the minimax method. We also
observe that the minimax method is very sensitive to the
different number of EM iterations. Lessiterations perform
better. However, the QBPC method is not so sensitive to
the number of EM iterations, especially in TTI20’°s case.

6. DISCUSSION AND CONCLUSION

The principle behind BPC approach is rather straightfor-
ward. Because we assume we have no knowledge about
the possible mismatch, we thus rely on a quite general
prior PDF to characterize the variability of the CDHMM
parameters caused by the possible estimation errors and/or
mismatches between training and testing conditions. We
try to average out this variability while making decision
with BPC. So, several factors will influence the efficacy of
the BPC. The first one is the appropriateness of the prior
PDF for the mismatch we are compensating. If the prior
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Figure 3: Performance (word accuracy in %) comparison
averaged over 8 female speakers on T120 task as a function
of amount of adaptation data among methods by combin-
ing on-line adaptation with plug-in MAP decoding and
QBPC decoding with different control parameters (3 EM
iterations for both on-line adaptation and QBPC decod-

ing)

PDF fails to cover the variability reflected in CDHMM
parameters, then BPC will not help much. However, be-
cause the BPC procedure does not make rigid assump-
tions about the possible distortions, consequently, it helps
for many distortion types. On the other hand, if we have
chance to access some testing data, by combining BPC
with OLA, we can make the prior PDF more appropri-
ate. The second factor which greatly influence the BPC
performance is the confusability of the classes we are com-
paring. By using the prior PDF to model the parameter
uncertainty, we are also making the classes more over-
lapping, and thus have the chance to lose some benefit
of BPC. This is especially true for confusable vocabulary
case which is evidenced by our experimental results. So,
BPC will always helps more in a less confusable classes
case because we have more chances to use a broader prior
PDF to accommodate a higher degree of distortions. The
third factor which might matter is the accurateness of the
approximation method in QBPC procedure to compute
the approximate predictive PDF for classification. The
fourth concerns the fact if it is enough to only consider
the uncertainty of the mean vectors of CDHMM. There
are more theoretical work to do if we want to consider the
uncertainty of the other parameters in BPC.

On-line model adaptation is a data-driven method
and its strength comes from the availability of the cer-
tain amount of test data. If the application involves a
recognition session which might consist of a number of
testing utterances, then a combined BPC decoding and
on-line adaptation of the HMM parameters will provide
a good solution to enhance the robustness towards vary-
ing environments, microphones, channels, speakers, and
other general mismatches or distortions. For real-world
applications, unsupervised on-line adaptation is usually
more realistic and desirable. One of the remaining re-
search issues is how to guide the unsupervised OLA when
the recognition rate is initially low. Different degree of
parameter tying and/or smoothing might be helpful. In-
corporating some verification mechanism will also be use-
ful and more theoretical works are needed to develop a
better verification paradigm.
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Figure 4: Performance (word accuracy in %) compari-
son averaged over 8 female speakers on TI20 task as a
function of amount of adaptation data among methods
by combining on-line adaptation with plug-in MAP de-
coding, QBPC decoding, and minimax decoding with dif-
ferent EM iterations (3 EM iterations for both on-line
adaptation and QBPC decoding)

In the problem we are coping with, we assume we
do not have enough knowledge about the possible mis-
matches and /or distortions. So, we use a blind compen-
sation type of technique, like BPC, to exploit the infor-
mation provided by testing data and the existing models
themselves to achieve some robustness. A better under-
standing on how the speech signal is distorted and /or var-
ied in different acoustic conditions will be helpful to design
a better structural model in structure-based compensa-
tion and/or a better ignorant model for semi-blind com-
pensation, like the prior PDF in BPC. It is also believed
to be crucial for efficient adaptation and compensation
to formulate and develop the appropriate mathematical
tools for discovering a good intrinsic structural model of
speech in acoustic, phonetic and linguistic aspects.

The biggest challenge might come from those applica-
tions which only involve a couple of utterances, but every
utterance involves a distinct ”distortion channel” from the
intended message to the received signal. How to reliably
and efficiently recover and/or extract the interested mes-
sage from this signal pose a big challenge for the so-called
robust ASR in this context.

REFERENCES

[1] Q. Huo and C.-H. Lee, “On-line adaptive learning of
the continuous density hidden Markov model based
on approximate recursive Bayes estimate,” IEFFE
Trans. on Speech and Audio Processing, Vol. 5, No.
2, pp.161-172, 1997.

[2] Q. Huo and C.-H. Lee, “On-line adaptive learning
of the correlated continuous density hidden Markov
models for speech recognition,” submitted to IEEFE
Trans. on SAP. See also a condensed version with
the same title in Proc. ICSLP-96, pp.985-988, 1996.

[3] Q. Huo, H. Jiang and C.-H. Lee, “A Bayesian predic-
tive classification approach to robust speech recog-
nition,” Proc. ICASSP-97, Munich, Germany, 1997,
pp I1-1547-1550.



