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ABSTRACT

The quantization of linear prediction coefficients (LPC)
is an important aspect in low bit rate speech coding. In
this work, we introduce a new approach, which exploits
the temporal dependencies in the line spectral frequen-
cies (LSF). We approximate each LSF track using expan-
sion into wavelet basis functions. As the LSF vary fairly
smoothly as functions of time, they perform very well when
interpolated. By vector quantizing the resulting wavelet ex-
pansion coefficients, the interpolated LSF tracks could be
quantized with a distortion of 0.91 dB using only 15.6 bits
per 20 ms update (780 bits per second). This is about 4 bits
per update less than the results obtained with previously
described procedures.

1 INTRODUCTION

The amount of information in a speech signal can be mea-
sured from different perspectives. For instance, one can
try to estimate the information rate transmitted from the
brain to the speech-production apparatus (or vice-versa),
or one can also estimate the information rate of the speech
signal itself. The former approach generally results in val-
ues that are much lower than the latter. In fact, estimates
that are based on the former approach are considered to
give the lower bound for the bit rate required for a speech
coder [1]. Moreover, the low information rate associated
with these estimates provides the motivation to study the
human speech-production apparatus. One commonly used
speech coding technique that is based on the understand-
ing of the human speech production system is the linear
prediction (LP) approach.

In the LP based speech coding, the speech signal is char-
acterized in terms of an LP residual signal and a set of LP
parameters. The LLP parameter set is generally interpreted
as a description of the short-time speech power spectrum.
When reconstructing a speech signal, accuracy of this spec-
trum is essential both for good speech quality and high intel-
ligibility. As a result, the search for more efficient quantiza-
tion of the LP parameters has become a very active research
area. In this paper, we present a method for transparent
quantization of the LP parameters at a very low bit rate.
It exploits the temporal structure in the parameters.

To put our LP quantization approach in proper perspec-
tive, we will first provide some comments on the state-of-
the-art. In this discussion, it is useful to distinguish between
memoryless quantization and quantization with memory of
the LP parameters. In memoryless quantization, only de-
pendencies within a set of LP parameters can be exploited.
An example of memoryless quantization is the split vector
quantizer of Paliwal and Atal [2]. Quantizers with mem-
ory can also exploit temporal dependencies. Examples of
such quantizers are the temporal decomposition method of
Atal [3] and the long-history quantizer of Xydeas and Ko [4].
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To allow quantizer comparisons, most authors have
adopted the same distortion measure: the mean of the
rms log spectral distortion. A distortion of 1 dB or less,
with no outliers beyond 4 dB and less than 2% above 2
dB is commonly used as a definition for “transparent cod-
ing” [2]. Practical memoryless vector quantization (VQ)
schemes seem to require bit rates of 24 bits per LP set or
more (e.g., [2]). However, memoryless quantization at bit
rates of down to 20 bits per LP set have been reported [5].
At the common update rate of 50 Hz, these correspond to
1200 and 1000 b/s.

Several authors provide estimates of the bit rate reduc-
tion made possible by exploiting temporal dependencies.
Svendsen [6] reports that for scalar quantizers, the bit
rate can be reduced by 50%. Svendsen estimates that his
method, in combination with a practical VQ, could result in
14.5 to 17 bits per LP set for transparent coding. (For a 50
Hz sampling rate his estimates would be lower.) Based on
information-theoretical arguments, Eriksson [7] estimates
savings of 5 to 6 bits per set for exploiting temporal depen-
dencies. This would lead to a bit rate of between 14 and 18
bits per LP set depending on the memoryless quantizer used
as starting point. Neither Svendsen nor Eriksson actually
created coders of rates below 20 bits per set. Several other
authors do report transparent coding below 20 bits per LP
set by using temporal dependencies. Bruhn [8], reports 19.5
bits per set using a noiseless coding scheme which reduced
the bit rate down from 24 bits per LP set. Xydeas [4] re-
ports 19 bits per set using a codebook containing the history
of the LP parameters.

Thus, previous works suggest that with the exploitation
of temporal dependencies transparent coding of the LP pa-
rameters at 15 bits per set is possible. We will confirm this
hypothesis with a transparent coding scheme requiring only
15.6 bits per LP parameter set (corresponding to 780 b/s).

Atal [3] showed that it is advantageous to use a tempo-
ral decomposition into interpolating functions prior to the
quantization of the LP parameters. We use a set of pre-
defined wavelet basis functions whereas Atal used adaptive
basis functions which had to be transmitted. We convert
the LP parameters first to a line-spectral frequencies (LSF)
representation and then expand the individual LSF track
into the basis functions. The coefficients of the wavelet basis
functions are vector quantized. Our quantization procedure
is computationally undemanding, but temporal decomposi-
tions generally require a high delay.

2 SIGNAL EXPANSION USING WAVELET
BASIS

The motivation (from coding view point) for signal expan-
sion lies in the fact that it may provide a lower coding cost,
and that the resulting representations can be more robust
to disturbances, such as, noise and quantization. If our ob-
jective is low coding cost, for instance, the expansion should
not affect the coding error significantly. In this work, we



show that describing the LSF using wavelet expansion pro-
vides this advantage.

Given the function f(n) satisfying some boundary con-
ditions, in wavelet based signal expansion, we want to find
the representation

Fm) =Y entn(n), (1)

where the wavelet basis functions ¢; x(n) are generated by
frequency scaling and time shifting the so-called mother
wavelet ¢(n) [9-13], that is,

Gy (n) =292 n — k). (2)
2.1 Generating the Wavelet Basis functions

A discrete-time wavelet basis can be generated by iterating
a two channel filter bank in a tree-structure [10,11]. The
equivalent of a J-level tree structured filter bank is shown
in Fig. 1. The left and right halves of the filter bank are
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Fig. 1. Filter bank interpretation of wavelets

called the decomposition and the reconstruction filters, re-
spectively. The basis functions of the discrete time wavelet
expansion are the impulse responses of the reconstruction
filter. The decomposition filter generates the weight co-
efficients for the expansion. It is important to note that,
except for the initial two channels, all adjacent channels
have relative sampling rates differing by a factor 2. This
is known as the dyadic sampling grid [10]. In the dyadic
sampling grid the relative sampling rate differences trans-
late to shifts in the time domain giving rise to the so called
multi-resolution pyramid. This is demonstrated in Fig. 2
for J = 3. In the figure, 9, represents the k-th transla-
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Fig. 2. The time-frequency grid for J =3

tion of the j-th scale wavelet basis function ;. The set
{¢jr} for j € {0,1,...,J} and k € {0,1,...,n;} forms the
wavelet basis. The two basis functions ¥, and %10 are
called the scaling function and the mother wavelet, respec-
tively. They formulate the platform for generating the rest

of the basis functions (See [11]). Similar representation of
the decomposition filter generates the corresponding analy-
sis wavelet family {¢;r}. If we start with a two channel
biorthogonal filter bank, the resulting wavelet pair (¢, ¢) is
said to be biorthogonal.

2.2 The wavelet expansion

Let ¢ and 9 represent the analysis and synthesis biorthog-
onal wavelet pair. Given the function f(n), we want to find
the expansion in (1) where the weighting coefficients c¢; ,

7 €1[0,J], k €]0,n;] are determined by the inner product’
¢k = (85,k(n), f(n)).

For simplicity of notation, we replace the double subscripts
with a single one. The ordering of the basis functions is
retained if the single subscript is defined as m = L2j_1J + k.
Then, we write

Fn) =" cmtm(n), (3)

m

cm = (dm(n), f(n)), (4)
m € [0,...,M — 1], where M is the total number of ba-
sis functions involved in the expansion. Let the function
f(n) be partitioned into time segments of N samples, where
N is the maximum of the supports of the wavelet basis
functions?. Let this partitioned time segment be defined as

f=[ f(no) flno+1) fro+ N —1) 1,

with n, =0, N,2N, 3N, ...
Also, define the matrices ® and ¥ as

[ $0(0) ¢o(N — 1)
d = : : ; (5)
L ¢-1(0) ¢m—1(N —1)
[ %o(0) Po(N —1)
V= : : . (6)
L Ya-1(0) Yar—a (N —1)
Then we can write
f=c"v, (7)

where the M x 1 weight vector ¢ is determined by
c=of", (8)

3 TEMPORAL DECOMPOSITION OF THE
LSF USING WAVELET BASIS

It is often convenient to use a transform prior to quantiza-
tion of a set of parameters. Such a transform can facilitate
quantization by lowering the interdependency of the quan-
tized parameters and/or by simplifying the error criterion
(or an approximation thereof). Thus, the transformation
to line-spectral frequencies (LSF) is advantageous, partic-
ularly for memoryless quantization of the LP parameters.
Our transformation to wavelet coefficients is a further step
towards efficient quantization.

In general, the LSF vary fairly smoothly as functions of
time, as can be noted from the fact that these represen-
tations perform very well when interpolated [14]. To de-
scribe these parameters efficiently, we use expansions into

1The inner product {.,.) is defined by (¢;k(n), f(n)) =
Zn ¢]7k(n)f(n) where ¢; 1 (n) and f(n) are both real valued
functions.

2This corresponds to the support of the mother wavelet.



biorthogonal wavelet basis functions. Thus, given an LSF
track® fi(n), k=1,...,p, we want to find the expansion
described in (3) for each fr(n), where the basis functions
are generated by iterating a two channel filter bank as dis-
cussed in section 2.1.

Prior to the expansion, the means of the LSF are re-
moved. The original LSF are sampled at 50 Hz which means
the dyadic sampling intervals for the wavelets of different
scales are 40 ms, 80 ms, 160 ms, 320 ms, etc. We used
an expansion into wavelets at three scales and the scaling
function. We found that the coefficients for the wavelets on
the higher scales nearly vanish and they were not used as
basis functions. Thus, for each 320 ms segment each LSF
track is described by M = 8 coefficients (four for the finest
scale, two for the intermediate scale, and one for the coarse
scale wavelets; and one for the scaling function). Let the
partitioned time segment of the LSF be represented by the
p x N-matrix F, i.e.

filno)  fi(no +1) fi(no+ N —1)
F= : : : - (9)
fo(no)  folno+1) fo(no+ N —1)

Then, the M x p wavelet coefficient matrix containing the
p weight vectors corresponding to the p LSF tracks is given
by (vis. (8))

C=oF", (10)

and the approximate LSF tracks by
FreC'y, (11)

where ® and U are as given in (5) and (6). We use the
prediction gains of the auto-regressive filters generated by
the original LSF and by the wavelet interpolated LSF to
validate the approximation in (11). As an example. the
original and the wavelet approximated LSF corresponding
to the speech segment “don’t ask me to carry an oily rag
like that” are shown in Fig. 3a and Fig. 3b, respectively.

4 QUANTIZATION OF THE WAVELET
COEFFICIENTS

Each LSF track is quantized independently. As mentioned
in the previous section, for each 320 ms interval there are
eight coefficients to be quantized per LSF track. The vector
of eight wavelet coefficients is vector quantized using a split
VQ method: the coefficient that corresponds to the scaling
function 1s scalar quantized with 6 bits, the three coeffi-
cient representing the two coarser scales are vector quan-
tized with 11 bits, and the four coefficients representing the
finest scale are vector quantized with 8 bits. Using a conven-
tional 10-th order LP representation, 250 bits are required
to describe the LSF for 320 ms. This corresponds to an av-
erage bit rate of 15.6 bits per 20 ms update interval, or 780
b/s. The quantized LSF that corresponds to the utterance
“don’t ask me to carry an oily rag like that” is shown in ig4.

The quantizer is trained using the standard LBG algo-
rithm. We used a weighted Euclidean distortion measure.
Let the M-vector cg, k =1, ..., p consist of the wavelet co-
efficients corresponding to the k-th LSF track? and &z the
corresponding codebook value. The error criterion is then
given by

Ck,Ck Zwmk ka Cm k) 3 (12)

3p is the order of the LSF coder. In most cases p = 10
4This corresponds to the k-th column in (10).

The original LSF
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Fig. 3. The LSF corresponding to the speech seg-
ment “don’t ask me to carry an oty rag like
that” spoken by a female speaker a) the orig-
inal LSF b) the interpolated LSF

%

where the wy,, are weighting factors. Good and even
asymptotically optimal weighting procedures exist for the
LSF [14-16]. For our purposes, these weighting procedures
must be extended to the wavelet coefficient criterion, taking
into account the support of the corresponding wavelet. Let
vg,; denote a conventional criterion weighing for k-th LSF
track at time sample j. As a simple approximation we used
as weighing in equation (12)

Wm,k — Z Uk, g (13)
JETm

where S, is the support of the wavelet basis function with
the index m. Again for simplicity, we used for v ;

, _ 1 1
BT R = frea () fk+1( ) — fi(g)

5 RESULTS

(14)

As we described above, our coding procedure involves two
steps; the wavelet expansion (interpolation) step and the
quantization step. The interpolation is evaluated using pre-
diction gain and the quantization using spectral distortion.
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Fig. 4. The quantized LSF corresponding to the
speech segment “don’t ask me to carry an
otly rag like that” spoken by a female speaker.
Compare it with Fig. 3b.

5.1 Interpolation

We found that the prediction gains associated with the in-
terpolated and the original LSF are comparable (the mean
prediction gain goes from 9.1 to 8.8 dB, averaged over one
minute of speech).

5.2 Quantization

Table 1 provides the main experimental results for our
wavelet based quantization procedure. We used data from
the TIMIT data base. The training and testing data base
were separate and consisted of 200, 000 and 6000 sets of LP
coefficients, respectively. Our results indicate that a mean
spectral distortion of 1 dB is possible at a bit rate of 15 bits
per LP parameter set, at an update rate of 50 Hz.

Table 1. Results of the wavelet based LP parameter quan-
tizer.

update bits per | mean SD | 2-4 dB | > 4 dB
interval (ms) | LP set (dB) (%) (%)
20 15.6 0.91 0.85 0

6 CONCLUSION

We found that, a biorthogonal wavelet expansion of the LSF
results in an LP parameter representation which facilitates
very efficient quantization. We were able to 1) interpolate
the LSF with good accuracy and 2) obtain a transparent
quantization of the interpolated LSF at a rate of only 15.6
bits per 20 ms update. This result is obtained without ex-
ploiting dependencies from between the LSF and with an ar-
bitrarily chosen wavelet basis. We expect that it is possible
to obtain further improvement by exploiting the dependen-
cies between the LSF, by choosing optimized wavelet basis
functions, and also by using more accurate weighting pro-
cedures. We also expect that, with an appropriate choice
of the wavelet basis, the slight deficit in the prediction gain
will disappear.

In general, our results suggest that temporal dependen-
cies are of paramount importance when designing an ef-
ficient quantizer for the LP parameters. Our particu-
lar method for exploiting these dependencies resulted in a
quantizer having a frame size of 320 ms, making it practical
only for nonreal-time applications such as voice storage and

speech synthesis. The method can be made robust against
channel errors since the wavelets have finite support, and
channel errors therefore affect only finite time intervals.

REFERENCES

[1] W. B. Kleijn and K. K. Paliwal, “An introduction to
speech coding,” in Speech Coding and Synthesis (W. B.
Kleijn and K. K. Paliwal, eds.), pp. 1-47, Elsevier Sci-
ence B.V, 1995.

[2] K. K. Paliwal and B. S. Atal, “Efficient vector quan-
tization of LPC parameters at 24 bits/frame,” IFEFE
Trans. Speech Audio Process., vol. 1, no. 1, pp. 3-14,
1993.

[3] B. S. Atal, “Efficient coding for LPC parameters by
temporal decomposition,” Proc. Int. Conf. Acoust.,
Speech and Signal Processing, vol. I[CASSP’83, pp. 81—
84, 1983.

[4] C. S. Xydeas and K. K. M. So, “A long history quan-
tization approach to scalar and vector quantization of
LSP coefficients,” in Proc. IFEFE Int. Conf. Acoust.
Speech Sign. Process., pp. 111-114, 1993.

[5] P. Hedelin, “Single stage spectral quantization at 20
bits,” in Proc. Int. Conf. Acoust. Speech Sign. Process.,
(San Francisco), pp. 57-60, 1992.

[6] T. Svendsen, “Segmental quantization of speech spec-
tral information,” in Proc. IEEFE Int. Conf. Acoust.
Speech Sign. Process., pp. 1517-1520, 1994.

[7] T. Eriksson, Vector quantization in speech coding. PhD
thesis, Chalmers University, Goteborg, Sweden, 1996.

[8] S. Bruhn, “Efficient interblock noiseless coding of
speech lpc parameters,” in Proc. IEFE Int. Conf.
Acoust. Speech Sign. Process., (Adelaide), pp. 1501
1504, 1994.

[9] I. Daubechies, Ten Lectures on Wavelets.
Philadelphia, 1992.

[10] M. Vetterli and J. Kovacevi¢, Wavelets and Subband
Coding. Prentice Hall, 1995.

[11] P. Vaidyanathan, Multirate Systems and Filter Banks.
Prentice Hall, 1993.

[12] A. N. Lemma and E. F. Deprettere, “Multi-scale non-
linear system modeling using wavelet networks,” The
SPIE Proceedings 1996, Denver Colorado, vol. SPIE-
96, August 4-9 1996.

[13] Y. Yu, S. Tan, J.Vandewalle, and E. Deprettere, “Near-
optimal construction of wavelet networks for nonlin-
ear system modeling,” Proceedings of 1996 ISCAS Int.
Symp. on OS5, vol. ISCAS’96, May 1996.

[14] K. K. Paliwal and W. B. Kleijn, “Quantization of LPC
parameters,” in Speech Coding and Synthesis (W. B.
Kleijn and K. K. Paliwal, eds.), pp. 433-466, Amster-
dam: Elsevier Science Publishers, 1995.

[15] J. Erkelens and P. Broersen, “On the statistical prop-
erties of line spectrum pairs,” in Proc. IEEFE Int. Conf.
Acoust. Speech Sign. Process., (Detroit), pp. 768-771,
1995.

[16] W. R. Gardner and B. D. Rao, “Optimal distortion
measures for the high rate vector quantization of LPC
parameters,” in Proc. IEFE Int. Conf. Acoust. Speech
Sign. Process., (Detroit), pp. 752-755, 1995.

STAM,



