REDUCING THE COMPLEXITY OF THE LPC VECTOR QUANTIZER
USING THE K-D TREE SEARCH ALGORITHM

V. Ramasubramanian and K. K. Paliwal

ATR Interpreting Telecommunications Res. Labs.
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan

ABSTRACT

Linear predictive coding (LPC) parameters are widely
used in various speech coding applications for representing
the spectral envelope information of speech. Transparent
quantization of the LPC parameters (average spectral dis-
tortion of 1 dB) can be achieved at 24 bits/frame using
the split vector LPC quantizer (SVLPC) which quantizes
10-dimensional line spectral frequency (LSF) vectors in
two parts. However, SVLPC suffers from a high compu-
tational complexity in quantizing each part (one of di-
mension 4 and the other of dimension 6) using indepen-
dent codebooks of size 4096 (corresponding to a rate of
12 bits/part). This limits the practical real-time appli-
cation of the coder. In this paper, we reduce the com-
putational complexity of the split vector quantizer by 2
orders of magnitude using the fast K-dimensional (K-d)
tree search algorithm under the bucket-Voronoi intersec-
tion (BVI) search framework. This is of significant im-
portance in rendering the SVLPC amenable for practical
real-time coding applications.

1. INTRODUCTION

Linear predictive coding (LPC) parameters are widely
used in various speech coding applications for representing
the spectral envelope information of speech. For low bit
rate speech coding applications, it is important to quan-
tize these parameters using as few bits as possible. Con-
siderable work has been done in the past to develop effi-
cient quantization procedures, both scalar and vector, for
quantizing the LPC parameters with smallest number of
bits. Among these, vector quantization of the LPC pa-
rameters has emerged as an effective approach to achieve
‘transparent’ quantization (average spectral distortion of
1 dB orless) of the LPC parameters. Currently, the lowest
bit-rate for transparent quantization is achieved by the s-
plit vector quantizer using line spectral frequencies (LSF)
[1]. This quantizer requires 24 bits/frame to achieve an
average spectral distortion of 1 dB, less than 2% frames
having spectral distortion in the range 2-4 dB and no
frame having spectral distortion greater than 4 dB. De-
tailed studies supporting the choice of LSF representation
over other LPC representation, the need to resort to split-
ting of the LSF vector and the distortion measure used for
vector quantization have been reported earlier [1]. Follow-
ing is a brief description of the basic vector quantization
encoding stage in the SVLPC quantizer.

In a typical LPC based quantization scheme, LPC pa-
rameters are obtained at a rate of 50 frames/sec, using the
10-th order LPC analysis and are quantized prior to trans-
mission. In the 24 bits/frame split vector LPC quantizer
(SVLPC) [1], each LPC parameter vector is transformed
to the corresponding 10-dimensional LSF vector. This

LSF vector is divided into two parts — the first part con-
sists of the first four LSFs and the second part the last
six LSFs. Each part is quantized independently using 12
bits. If the LSF’s of a frame representing a short seg-
ment of speech is given by the vector f = (f1, f2, ..., fi0),
this is quantized into a vector f = (fl, o fa e, flo),
where, (fl, e ,f4) and (f5, e flo) are respectively the
nearest-neighbor codevectors of the first part (f1,..., f1)
and the second part (fs, ..., fig) from the corresponding
codebooks of the two parts each of size 4096. The dis-
tance measure d(f,f’) between the LSF test vector f and
a LSF codevector f is the squared error distance given by
d(f, 1) = 12 [(fi — fi)]2, where f; and f; are the i-th
LSFs in the test and codevector respectively. The LPC
quantization of one frame of speech corresponds to vector
quantization encoding of each part using a codebook of
size 4096. This requires computation of 4096 distances
for each part and is a very high computational require-
ment for vector quantization (VQ) encoding which limits
the practical real-time application of the coder.

In this paper, we are concerned with the computa-
tional complexity of the SVLPC quantizer. The main
aim 1in this paper is to report the results of applying an
efficient fast nearest-neighbor search algorithm to reduce
the computational complexity of the split vector quan-
tizer. The fast algorithm is a K-dimensional (K-d) tree
search algorithm under the bucket-Voronoi intersection
(BVI) search framework [2]. This paper is organized as
follows. In Section 2, we give a brief description of the
K-d tree data structure. In Section 3, we describe the
bucket-Voronoi intersection (BVI) framework. Section 4
describes the preprocessing procedure in constructing the
K-d tree for using in the BVI framework. This involves
optimizing the tree using efficient criteria and finding the
bucket-Voronoi intersections. In this section we describe
two optimization criteria used for the simulation study
in this paper. In Section 5, we present results obtained
in reducing the computational complexity of the SVLPC
quantizer for the two parts (one of dimension 4 and the
other of dimension 6) under the squared error distance.

2. THE K-DIMENSIONAL (K-D) TREE

An important approach towards fast VQ encoding is the
use of data structures which facilitate fast search of the
codebook which is normally unstructured. In this con-
text, the K-d (K-dimensional) tree structure is a power-
ful structure in providing efficient space localization of a
vector in K-dimensional space (RK) with very low over-
heads: A K-d tree structure of depth d partitions the
RE space into 2¢ disjoint hypercuboidal regions (bucket-
s) and allows identification of the bucket containing any
given vector in R in d scalar comparisons.

The R space is split into two half spaces by means
of an hyperplane orthogonal to one of the K coordinate
axes. Such an hyperplane H, given by H = {x € RE .
z; = h}, defines two half spaces, Ry and Rr as Ry =
{x e R :4; <h}and Rp = {x € R™ : ¢; > h}. The
initial region corresponds to the root of the tree at layer
1 and the two subregions R; and Rp obtained by the
division correspond to the left and right sons at layer 2.
Each of these two half spaces are successively divided by
hyperplanes orthogonal to the coordinate axes and d such
successive divisions starting with the initial region as the
root at layer 1 creates a tree of depth d with 2¢ terminal
regions termed ‘buckets’ at the (d + l)th layer.

Every non-terminal node is associated with a region
and a partitioning hyperplane of the form x : z; = &,
which needs storage of two scalar quantities (7, k) at each
node, where j is the index of the coordinate axis orthog-
onal to the plane (referred to as the ‘partitioning’ or ‘dis-
criminator’ axis), and, h is the location of the plane on
this axis. Given any vector in R, it can be located with
respect to the dividing plane H at any node by the scalar
comparison z; < h, i.e., comparing the vector’s 7t com-
ponent value with the partition value h. Starting from
the root node, a sequence of d such scalar comparisons
of the vector’s j'* component value with the partitioning
hyperplane (j, h) at that node leads to the leaf (or bucket)
containing the vector.

3. BUCKET-VORONOI INTERSECTION
SEARCH

Given a set of N codevectors C = {c1,...,cn}, along-
with a specified distance measure, the R space is par-
titioned into N disjoint regions {V1, Va,...,Vx}, known
as Voronoi regions. V; is the Voronoi region of ¢; and
contains all points in R¥ nearer to c¢; than any other
codevector, ie., V; = {x € RY : d(x,¢;) < d(x,¢5),5 =
1,...,N}. Thus, if q(x) denotes the nearest-neighbor
quantization of x then, V; = {x € R¥ : q(x) = ¢;} is
the nearest-neighbor locus region of ¢;. If a vector x in
R is contained in the Voronoi region V;, the associated
codevector ¢; will be the nearest-neighbor of x.

In the bucket-Voronoi intersection search framework,
each bucket is associated with a set of codevectors whose
Voronoi region intersect with the bucket region. This sub-
set is referred to as the bucket-Voronoi intersection list (or
BVI-list) of that bucket. The buckets and the Voronoi re-
gions provide two independent partitioning of the same
space using disjoint regions. Therefore, if the test vec-
tor is contained within the bounds of a particular bucket
region, then the test vector can be present only in one
of the Voronoi regions having a non-empty intersection
with the bucket. Thus, the BVI-list of a bucket contains
the nearest-neighbor codevector of any vector within the
bucket. For any given test vector, its nearest-neighbor
can therefore be determined by a fast and localized BVI
search in two steps:

1. Determine the bucket containing the test vector.
This requires d scalar comparisons for a tree of

depth d.

2. Perform a search (by actual distance computation)
among the small set of codevectors whose indices
are stored in the BVI - list associated with that
bucket.

4. PRE-PROCESSING

The BVI search requires a pre-processing phase consisting
of 1) Constructing the K-d tree for a given set of codevec-
tors and, ii) Finding the BVI list for each bucket of the
resulting tree. Subsequent to this, the K-d tree structure
can be used for fast encoding of arbitrary new test vec-
tors. The following gives a brief description of the steps
involved in this pre-processing phase.

4.1. Construction of the K-d tree

The construction of the K-d tree involves the choice of the
partitioning hyperplane at each node of the tree. This is
referred to as optimization of the tree for the given set
of codevectors. A non-terminal node region in the K-d
tree is associated with a bounded region R € R, defined
asR={xecR" 1a; <z; <b;, j=1,...,K}. As
noted earlier, a hyperplane {x : z; = h; a; < h < b;}
(represented as (7, k) henceforth), divides R into two sub-
regions R; and Rgr. Optimization of the K-d tree in-
volves making a choice of the partitioning hyperplane
(45 hi+), 5" €{1,...,K}and a;+ < hj« < b;+ under some
criterion with respect to region R. This is termed local op-
timization of the tree and has been addressed earlier in
detail in [2]. Here, we consider two main optimization
criteria in designing the tree for use with the BVI search.
These are namely, 1) the Friedman-Bentley- Finkel (FBF)
criterion [3], [4], and, ii) the generalized optimization cri-

terion (GOC) [2].

4.1.1. Friedman-Bentley-Finkel (FBF) criterion

If Cr = {c; : ¢; € R} is the set of codevectors lying
within the region R represented by the node to be parti-
tioned, the FBF criterion chooses the partitioning hyper-
plane (5%, hj+) as follows:

1. j* is chosen as the the axis along which the cor-
responding codevector coordinates have the maxi-
mum variance and,

2. hj* is chosen as the median of the codevector coor-

dinate distribution on axis j*,
where, the codevector coordinate variance and median
are computed using codevectors in Cg.

4.1.2. Generalized optimization criterion (GOC)

The FBF criterion was originally obtained for using the
K-d tree under a backtracking search [3] and hence opti-
mizes the tree only with respect to the codevectors. How-
ever, for the bucket-Voronoi intersection search, a more
direct optimization results with the use of information
about the Voronoi regions intersecting with the region
corresponding to the node being optimized [2]. One of
the optimization criteria proposed under this framework
is the generalized optimization criterion (GOC) which is
briefly described in the following:

Let Cgr, Cgr; and Cgry be the set of codevectors
whose corresponding Voronoi regions intersect with the
regions R, Ry and Rpg respectively, i.e., Cr = {¢;
ViﬁR#@}, CRL = {Ci VN Rp #@}, CRR = {Ci :
Vi Rr # 0}, where V; is the Voronoi region associated
with codevector ¢;. Let n, ny and ngr be the size of the
sets Cr, Cgr, and Cgrj respectively.

Given x € R, the nearest-neighbor of x belongs to
Cr and can be found with a cost of n distance computa-
tions. However, the partitioning of R reduces the search

complexity from n to nz or ngr after one scalar compar-
ison. The Voronol intersection numbers ny and ngr for
a given division (g, k) of R determine the complexity re-
duction that can be achieved for x € R. The generalized
optimization criterion (GOC) chooses the optimal parti-
tioning hyperplane (5%, hj+«) such that nz and ng are as
small as possible. GOC performs this in two steps:

1. Find the optimal partition location h} on each co-
ordinate axis j = 1,..., ' as the partition which
minimizes |nz(j,h) — nr(j, h)|:

I :argajrsnhirslbij(j,h)—nR(j,h)| (1)

2. Find the optimal partition axis 7* as the coordinate
axis for which its optimal (nz,ngr) division at A}
is closest to the balanced division value (n/2, n/2),
i.e., which minimizes the Euclidean distance d(p,q)
between p = (nr(h]), nr(h})) and q = (n/2,n/2),
where n is the number of Voronoi regions intersect-
ing with the region to be partitioned:

= arglgisnK d(p,q) (2)

The main information required by the GOC are n,
and (nz(j, h),nr(j,h)) (the number of Voronoi regions
intersecting respectively with the left and right regions
for a candidate division k on coordinate axis j) for any
(j,h). These are obtained using the projections of the
Voronoi intersection regions in R corresponding to the
codevectors in Cgr. If (Vi)R is the intersection of Voronoi
region V; inside the region R, ie., (Vi)r = Vi N R, then
P! = (PiJ,L’ PiJ,U) is the projection of (V;)r on coordinate
axis j, PiJ,L and PiJ,U being the lower and upper boundaries

of the projection interval P/. Cg is obtained using a large
set of training vectors T' = {x1, X2,...,Xm} (or uniformly
distributed set of vectors inside R) as,

Ca={e;:VinR#0} = | J ax) (3)
X;ER
where, q(xl) is the nearest-neighbor codevector of x; in
the codebook. Subsequent to the determination of Cg,
the projection estimates P/ for j = 1,..., K of each ¢; €
Cr is obtained from T'= {x;},1=1,...,m as,

Pl, = minc;:ci=aq(x)
Ply = maxs;:eci=q(x) (4)

Given P/ = (PZL,P{U),j =1,...,K, nr(j,h) and

7 7

ng(j,h) are obtained for any (j, h) as,
np(i k) = |Sy(h)], {Sp(h)=1: P, <h}
nr(j k) = [Sg(h)l, {Sk(h) =1i: Py, >h} (5)

In the first step of GOC (1), the function |nz(j,h) —
ng(j, k)| changes only at the projection boundaries
(PiJ,L’ PiJ,U)’ i=1,...,n. Hence it has to be evaluated on-
ly at these 2n locations as the candidates for the optimal
h*. If the projection boundaries (PiJ,L’ PZU),i =1,...,n
are distinct, then |nz(j,h) — nr(J, 2)| has a minimum at
the n'” interval among the 2n — 1 intervals formed by the
ordered sequence (PiJ,L’ PiJ,U)’ i =1,...,n. In this case,
h* can be located at the n'® interval directly, incurring
only the O(2nlog(2n)) cost for ordering the 2n projection
boundaries.

4.2. Bucket-Voronoi intersection (BVI) list, stor-
age overhead and complexity of BVI search

4.2.1. Bucket-Voronoi intersection (BVI) list

In order to use the K-d tree (subsequent to its optimiza-
tion), for bucket-Voronoi intersection based search, it is
necessary to find the set of codevectors associated with
each bucket corresponding to the Voronoi regions inter-
secting with the bucket. This set (henceforth, referred
to as bucket-Voronoi Intersection list or BVI list) can be
determined after the optimization (by FBF or GOC) is
completed. This is done in the same manner as finding
Cr using (3) from the training data 7. This requires a to-
tal cost of O(m log V) scalar operations to find the bucket
(at depth d = log N) containing each test vector in T up-
dating the corresponding bucket-Voronoi intersection list.

4.2.2. Storage

The storage for BVI search consists of representing the
tree using two scalar quantities (j,) per non-terminal
node to describe the partitions along with the BVI list
indices of the terminal bucket nodes. For a tree of depth d,
the total storage is (2d —1) integer words for the partition
index j, (2% — 1) real words for the partition location k,
and (Z—l— 1)2d integer words for the the BVT list indices at
the terminal bucket nodes. For tree depth d = log N this
amounts to a storage equivalent of (3 —|—Z)2d integer words,
where b is the average bucket size. b has been empirically
observed to approach a constant O(1), i.e., independent
of N for tree depth d = log N, and the total storage of
the K-d tree for BVI search is linear (O(N)).

4.2.8. Complexity of BVI search

Given the tree and the BVI list, the nearest-neighbor
search for any new test vector proceeds in two phases
— first identifying the bucket containing the test vector
and, then, searching within the list of codevectors asso-
ciated with the bucket. The resulting solution will be
optimal if the bucket-Voronoi intersection list of all the
buckets have been obtained correctly. The BVI search
complexity is directly determined by the size of the BVI
lists in the tree. The size of the bucket regions decreases
linearly for increasing tree depth. This results in a de-
crease in the number of Voronoi regions which intersect
with the bucket (size of the BVI list) which inturn reduces
the BVI search complexity linearly with tree depth. The
tree depth can be increased indefinitely, with the search
complexity decreasing monotonically, limited only by the
storage requirements.

For searching a set of N codevectors, a properly opti-
mized tree of depth d = log N can achieve O(1) (constant,
i.e., independent of the codebook size N) complexity re-
duction with linear (O(N)) storage and O(log N) memory
access overhead cost [2]. In the experiments carried out
here, we have limited our tree depth d to log N and the
tree is uniform with N buckets at the terminal layer.

5. RESULTS

Here, we present simulation results using the K-d tree
based BVI search for reducing the complexity of SVLPC
quantization of 10 - dimensional LSF vectors with the
squared error distance. We have two codebooks Cy4 and
Cg, respectively for the first part of dimension 4 and the
second part of dimension 6, each of size N = 4096. The

data and codebooks used here are the same as used in [1].
The codebooks were obtained using a training set of 60000
LSF vectors. The test set consists of 8000 LSF vectors *.

In order to apply the BVI search to the split-vector
quantizer, the K-d tree is constructed first using the given
codevectors for the two parts separately. Since the code-
book size N in this case is 4096, the tree depth used here
is d = log N = 12 such that there are 4096 (= 2¢) buckets
in the tree. Here, we report results for trees optimized
using the FBF and GOC criteria. For the GOC criteria,
60000 vectors are not adequate in estimating the Voronoi
projections for codebook size 4096 in dimensions K = 4
and K = 6. Therefore, we have increased the training
data set to 1,200,000 vectors by a factor of 20 by generat-
ing 20 new vectors by random perturbation of each vector
in the 60000 vector set within a small radius around the
vector. We use this 1,200,000 vector set for the GOC op-
timization and for generating the BVI lists subsequent to
optimization by FBF and GOC.

Here we report results for the following optimization
and search procedures:

1. BCK: Backtracking search ? with tree optimized
using FBF criterion.

2. BVI-FBF: Bucket-Voronoi intersection search with
tree optimized using FBF criterion.

3. BVI-GOC: Bucket-Voronol intersection search with
tree optimized using GOC criterion.

Table I shows the results for BCK, BVI-FBF and BVI-
GOC in the split-vector quantizer of codebook size N =
4096 for the two parts of dimensions K = 4 and K = 6.
Here, the full-search complexity is 4096 distances per test
vector. The performance of the fast search is measured in
terms of the average (n¢) and worst-case complexity (nc)
of the search. Here we have shown results for quantizing
two sets of data for tree depths d = 8 and d = 12: i)
1,200,000 vectors used in optimizing the tree using GOC
criterion; this is referred to as the training data (Trg) and,
ii) test data of 8000 vectors (Tst).

From this table, it can be seen that both backtrack-
ing search BCK and the BVI search (with either FBF or
GOC optimization) have comparable average complexity
nc . However, the backtracking search algorithm BCK
suffers a very high worst-case complexity in comparison

1These were obtained from the ‘FM radio’ data base de-
scribed in detail in [1]. This consists of 23 minutes of speech
recorded from 35 different FM radio stations. The first 1200
seconds of speech (from about 170 speakers) forms the training
set and the last 160 seconds of speech (from 25 speakers) forms
the test set. The 10-dimensional L'SF vectors were obtained by
10-th order LPC analysis performed for every 20 ms using a
20-ms analysis window.

2 Backtracking search: The FBF criterion [3], [4] was pro-
posed for optimizing the tree to minimize the expected search
time under a backtracking search procedure. The backtracking
search consists in first finding a tentative (current) nearest-
neighbor of the given test vector X from among the set of
codevectors within the bucket containing the test vector X and
then in determining the actual nearest-neighbor from among
other buckets which overlap with the current nearest-neighbor
ball. The overall search is carried out by a recursive proce-
dure which implicitly performs a backtracking to move from
one overlapping bucket to another, the overlap being detected
by a bounds-overlap-ball test. The algorithm based on this
optimization and backtracking search has a O(log N) average
complexity performance. However, the main shortcoming of
the backtracking search is its high computational overhead and
the resulting high worst-case complexity [4].

to BVI search. Considering the BVI search, it can be
noted that the GOC optimization offers lower worst-case
complexity in comparison to the FBF criterion. The B-
VI search is able to reduce the search complexity of both
parts (K = 4 and K = 6) by 2 orders of magnitude for
depth d = 12 over the full-search algorithm. The consis-
tency of performance of BVI search for both the training
and test data can also be noted.

6. CONCLUSIONS

The quantization of the LPC parameters at very low bit-
rates to achieve transparent quality quantization is an im-
portant problem. Recent solutions to this are based on
vector quantization (VQ) of the LPC vectors using large
codebook sizes. However, the resultant high computa-
tional complexity of VQ encoding is a main problem in
these quantizers. In this paper, we have used a fast vec-
tor quantization encoding procedure termed the bucket-
Voronoi intersection (BVI) search to reduce the computa-
tional complexity of the split-vector quantizer. We have
shown that the BVI search algorithm can offer over 2 or-
ders of magnitude reduction in the computational com-
plexity of the split vector quantizer, thereby rendering it
amenable for practical real-time coding.

Table 1: Performance comparison of the K-d tree search

algorithms BCK, BVI-FBF and BVI-GOC

Part-1 Part-11
Data Search K=4 K =6
d set Algorithm | we nc nc nc

BCK 64.0 | 325 | 181.6 | 1460
Trg BVI-FBF | 63.6 | 103 | 133.1 231
BVI-GOC | 60.8 71 | 1251 154
8 BCK 68.7 | 286 | 185.0 949
Tst BVI-FBF | 63.9 | 103 | 131.7 231
BVI-GOC | 61.1 71 | 124.9 154

BCK 28.5 | 162 91.5 | 1211
Trg BVI-FBF | 14.3 33 31.7 83
BVI-GOC | 12.8 22 26.9 51
12 BCK 31.4 | 130 93.7 637
Tst BVI-FBF | 14.4 33 31.8 83
BVI-GOC | 12.9 22 26.7 51

REFERENCES

[1] K. K. Paliwal and B. S. Atal, “Efficient vector quan-
tization of LPC parameters at 24 bits/frame”, IEEFE
Trans. Speech and Audio Processing, vol. 1, no.1, pp.
3-14, Jan. 1993.

[2] V. Ramasubramanian and K. K. Paliwal, “Fast K-
d tree algorithms for nearest-neighbor search with
application to vector quantization encoding” [FEF
Trans. on Signal Processing, vol. 40, no. 3, pp. 518—
531, Mar. 1992.

[3] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An
algorithm for finding best matches in logarithmic ex-
pected time”, ACM Trans. Math. Software, Vol. 3,
No. 3, pp. 209-226, Sept. 1977.

[4] V. Ramasubramanian and K. K. Paliwal, “Fast vec-
tor quantization encoding based on K-d tree back-
tracking search algorithm”, Digital Signal Process-
ing, 1997 (in print).

