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Abstract

We present a novel method for recovering articula-
tor movements from speech acoustics based on a con-
strained form [9] of a hidden Markov model. The
model attempts to explain sequences of high dimen-
sional data using smooth and slow trajectories in a
latent variable space. The key insight is that this
continuity constraint when applied to speech helps to
solve the \ill-posed" problem of acoustic to articula-
tory mapping. By working with sequences of spec-
tra rather than looking only at individual spectra, it
is possible to choose between competing articulatory
con�gurations for any given spectrum by selecting the
con�guration \closest" to those at nearby times. We
present results of applying this algorithm to recover
articulator movements from acoustics using data from
the Wisconsin X-ray microbeam project [3]. We �nd
that the recovered traces are highly correlated with
the measured articulator movements under a single
linear transform. Such recovered traces have the po-
tential to be used for speech recognition, an applica-
tion we are currently investigating.

1 Introduction

A potent objection to speech recognition techniques
as they exist today is the lack of speech-speci�c
knowledge in them. The existing models could be
(and are) equally well used to identify machine noises
or DNA sequences. By incorporating prior informa-
tion about the nature of speech, the problem can be
heavily constrained. Such regularization is essential
to achieving more robust and accurate performance
than current approaches permit.

One way to view automatic speech recognition is
as a code-breaking problem [1]. There is an unknown

message (say a sequence of phonemes) which has been
encoded into a pressure versus time waveform. Our
goal is to decode the waveform and recover the mes-
sage. Two important sources of prior information are
commonly used to aid us in this decoding. First, we
know a lot about the set of possible messages be-
cause languages have very strong syntactic structure;
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this motivates work on language modeling for use in
recognition systems. Second, we know a lot about the
receiver of the code through studies of human percep-
tion; this allows us to preprocess the waveform by em-
phasizing perceptually relevant features.1 Such stud-
ies motivate short-time spectral analysis as an almost
universal preprocessing step in recognizers. However,
we also know a lot about the producer of the code from
studies of speech production; the ultimate aim of the
present work is to use speech production models to
improve speech recognition systems.

2 Methods

In particular we draw upon continuity , low-frequency
energy and dimensionality reduction as essential con-
straints from speech production models. Because hu-
mans speak using articulator movements that are for
the most part slow and smooth,2 the complicated
acoustic signals which we observe should ultimately
be explainable by slowly varying latent variables (the
articulator movements). Furthermore, since the ar-
ticulatory system has a limited number of degrees of
freedom (estimates vary from 3 to 10), the number of
such independent variables required should be small.
Such explicability constraints are an important fea-
ture of speech signals and are not obviously true of,
for example, DNA sequences.

In this paper we present a novel approach for recov-
ering information about articulator movements from
acoustics alone. We apply a constrained form [9]
of a hidden Markov model to learn low-dimensional
trajectories which explain observed high-dimensional
time series. This is similar in spirit to other di-
mensionality reduction techniques such as Kohonen
mapping or principle component analysis but con-
tains a crucial new element: we require the learned

1Many preprocessors discard certain information about the
waveform. Continued intelligibility by humans is one (but by
no means the only) way to ensure that such preprocessing does
not render the unknown message unrecoverable. In other words
if we know that a certain manipulation of the acoustic signal
leaves it still intelligible to humans then we can be sure that
it has not destroyed essential information. However it may
certainly have destroyed useful information.

2While individual articulators may at times make abrupt
movements in general there is little power above 20 Hz in mea-
sured traces. See for example [2].



trajectories to only vary slowly and smoothly even
though the original (acoustic) data may have high
frequency components or abrupt spectral changes.
The algorithm assigns emission probabilities over a
high-dimensional output space to �xed cells in a low-
dimensional map. These probabilities are learned
such that smooth paths in the low-dimensional map
generate sequences like those in the observed data, or
equivalently, so that the observed data have high like-
lihood with only slow and smooth paths in the map.
The model admits both noise in the output observa-
tions as well as the possibility for more than one cell
in the low-dimensional map to have similar output
probabilities.

By way of illustration, consider playing the follow-
ing game: divide a sheet of paper into several con-
tiguous non-overlapping regions which between them
cover it entirely. In each region inscribe an integer,
allowing numbers to be repeated in di�erent regions.
Now place a pencil on the sheet and move it around,
reading out (in order) the numbers in the regions
through which it passes. Add some noise to the obser-
vation process so that occasionally an incorrect num-
ber is reported in the list. The goal of the game is to
reconstruct the con�guration of regions on the sheet
from only such an ordered list of noisy numbers.

How does this model relate to speech processing?
The low-dimensional map in which we are learning
trajectories (the \sheet" in our game) represents an
abstract \articulatory" space (for example articulator
positions and voicing condition). The output proba-
bilities for each cell in the sheet represent the sound
type which is produced when the articulators are in
the con�guration speci�ed by the cell's location. (In
our game this corresponded to the choice of number in
each region.) From this viewpoint, playing the game
outlined above is akin to pursuing an acoustic to ar-

ticulatory mapping : we perform short-time spectral
analysis on an incoming acoustic signal, classify each
short-time spectrum into one of a �nite number of
categories, and then attempt to reconstruct the tra-
jectories in the articulatory space based only on the
observed sequences of pattern numbers.

By allowing symbols to be repeated in the map, we
are recognizing that there may be several di�erent

articulatory con�gurations all of which produce very
similar spectral patterns. This one-to-many aspect
of the acoustic to articulatory mapping has led many
researchers to declare the inverse mapping problem
to be impossible or at least ill-posed. However, this
objection ignores the crucial continuity property that
articulators possess. Thus, while we may not be able
to specify a single articulatory con�guration given a
single spectrum, we may indeed be able to recon-
struct articulatory traces from sequences of spectra.
This use of temporal information should allow bet-
ter recovery of articulator information than simple
\inverse-lookup" procedures used in the past [8].

3 Details of the algorithm

The basic algorithm used to learn the low-
dimensional trajectories is a variant of the standard
hidden Markov model learning algorithm. The key
di�erence is that the state transition matrix is pre-

computed and �xed throughout the learning. The
precomputation is achieved by �rst identifying each
state in the Markov model with a cell in a low-
dimensional packing of space (we have used hexag-
onal and cubic packings). The transition matrix is
computed by selecting some self-transition probabil-
ity for each state which will control the typical speed
of trajectories through the map. All remaining prob-
ability is then distributed equally amongst the states
which correspond to neighbours in the cell packing.
The transition probability to non-neighbour states is
�xed to zero. In this way, all legal state sequences in
the model correspond to slow and smooth paths in
some low-dimensional space.
Given these �xed transition probabilities, the out-

put emission probabilities for each cell are learned
using the standard Baum-Welch updating procedure.
It is possible to use both continuous valued and dis-
crete outputs. For the experiments reported below
we have used only discrete valued outputs. Once the
learning of the output probabilities has converged,
any particular observed data sequence can then be de-
coded (using the equivalent of the Viterbi algorithm)
to discover its corresponding state trajectory in the
low-dimensional map. Since there are a �nite num-
ber of cells (states) in the map and since they are
located at the grid-points of a particular packing, the
raw recovered trajectories will jump from grid-point
to grid-point. A continuous low-dimensional trajec-
tory is produced from these recovered state sequence
by interpolation using a kernel whose power spectrum
matches the average power spectrum of the observed
data in each dimension.

4 Results

We present results on synthetic data (Figs. 1 & 2),
which include noise in the observations as well as re-
peated numbers in the true maps, indicating that the
algorithm can reliably recover smooth maps. The
synthetic data were produced by making random
walks (with self transition probability 10%) in the
true map of Figure 1 to produce sequences of output
numbers. Notice that the true map contains dupli-
cates of the numbers 6 and 1. These output sequences
were then corrupted with noise by replacing 15% of
the symbols with a random symbol. These noisy se-
quences were then used to learn the map shown in
Figure 2. Although the learned map shown here has
the same number of states and topology (hexagonal
packing) as the true map, results are similar if the
learned map has more states or cubic packing.



In addition, we apply the algorithm to real speech
data from the Wisconsin speech production database
[3]. This database contains simultaneously recorded
acoustic and articulatory data. The acoustic data are
sampled at roughly 21 kHz and the articulatory data
consist of roughly 150 Hz sampling of 8 articulator po-
sitions on the midsaggital plane. The acoustic data
were preprocessed by computing 12 mel-frequency
cepstral coe�cients based on 23.5 ms windows at a
frame rate of 6.9 ms (designed to match the artic-
ulatory sampling). These cepstral coe�cients were
then vector-quantized using a codebook of 64 sym-
bols. The codebook was trained using a batch version
of the k-means algorithm. We then applied the con-
strained Markov model with state spaces of various
dimensions from 1 to 10 to these processed acoustic
data.

The trajectories that were recovered (Figs. 3-6) in
the map space are highly correlated3 with the ac-
tual measured articulator traces (after being appro-
priately linearly transformed). In this sense, the al-
gorithm performs a kind of acoustic to articulatory
mapping. The original mapping is unsupervised : ar-
ticulatory data are not used to train the system. How-
ever, in order to evaluate the algorithm, after it had
been run, articulatory data were used to compute
the best single linear transformation between all the
learned trajectories in the map and all the actual ob-
served articulator movements. This single transform
can then be applied to any individual trace to gener-
ate a recovered articulator trajectory. In our experi-
ments, all utterances were used to �t the transform,
but the results are similar if a random subset of half
are left out of the �tting.

It is important to emphasize that only a very lim-
ited set of sounds were used in these tests with speech
data. In particular we used 56 noiseless utterances of
vowels, consonant-vowel-consonant triples (/s/V/d/)
and vowel-consonant-vowel triples (/uh/C/a/) all
from a single male speaker. Nonetheless, our results
are encouraging from the point of view of being able
to recover a simple linear transformation of articula-
tor information from acoustics alone. Notice that it
is impossible to recover anything better than an or-
thogonal transformation (rotation plus axis aligned
scaling) of the true information since the coordinate
axes and measurement units used to specify the ar-
ticulator movements are both arbitrary.

Most previous work in acoustic to articulatory
mapping (for example [4,8]) has focused on entirely
supervised methods which do not directly incorpo-
rate the continuity constraint. One notable exception
is the related unsupervised algorithm of Hogden [5]
which was an early inspiration for many of the ideas
in this work.

3The average correlation coe�cient was at least 0.9 for maps
of dimension 4 or greater.

5 Future Work

Our motivation for pursuing an acoustic to articu-
latory mapping is the belief that speech recognition
may be signi�cantly more tractable in the articula-
tory domain.4 We are currently in the process of us-
ing this recovered articulatory information as input to
a recognition system, to evaluate if such knowledge
increases performance. Earlier studies ([6],[7]) us-
ing similar data but supervised mappings have shown
promising results in this direction. We are also inves-
tigating the recovery of articulatory information from
a larger range of speech sounds and from continuous
speech, as well as investigating the degradation of the
mapping as acoustic noise is added.
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Figure 1: Original synthetic map and a portion of a sam-
ple trajectory. Notice that numbers 6 and 1 are repeated.
Trajectories were random walks with 15% probability of

outputting a random symbol instead of the region num-
ber.
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Figure 2: Learned map (derived from a 16 state HMM)
and recovered trajectory. Font size indicates symbol prob-
ability. The HMM was trained on a sequence of 500 noisy

output numbers generated from the map above. Note the
key feature: contiguous cells in the original map tend to
be contiguous in the learned one; hence trajectories in the
learned map remain smooth.

4The main reason for this belief is the observation (for ex-
ample see [4]) that variability, which is a major source of the
di�culty in recognition, may be easier to identify and account
for in the articulatory domain. That is, certain aspects of ar-
ticulation are reliably repeated while other aspects are highly
variable across repetitions of the same utterance. This vari-
ability manifests itself as generalized acoustic variability which
plagues traditional spectral-feature based recognizers. How-
ever if recognition were performed in the articulatory domain,
a system might learn to rely only on the reliable articulation
patterns, thereby achieving more robust recognition.
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Figure 3: A measured trace of actual speech articulator
data and its reconstruction. The horizontal and vertical
axes are the x and y coordinates of the pellet. For this ex-

ample, a 4-dimensional map containing 1296 cells and 64
output symbols was learned. The recovered trace shown
here is a linear transformation of a trajectory learned from

only acoustic, not articulator data. A single linear trans-
formation was used to project all the map trajectories
onto the actual articulator traces, as opposed to a di�er-

ent transform for each pair.
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Figure 4: Similar reconstruction for a 1-dimensional map.
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Figure 5: Similar reconstruction for a 2-dimensional map.
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