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ABSTRACT

Continuous Speech Recognition Systems (CSR)
usually include large sets of context dependent
units to model contextual variations in the
pronunciation of phones. The goal of this work
was to obtain adequate sets of sub-lexical models
by using acoustic information but excluding any
previous phonological knowledge. At each
iteration of a classical Viterbi training scheme
each acoustic model was split into a set of more
accurate models. This approach was evaluated
over a Spanish acoustic phonetic decoding task.
The experimental results showed that this
approach produces similar recognition rates than
classical triphones.

1. INTRODUCTION

Continuous Speech Recognition Systems (CSR)
usually include large sets of context dependent
units to model contextual variations in the
pronunciation of phones [1-4]. Although
phoneticians have defined sets of rules that
explain such phonological variations, automatic
methods selecting the most frequent triphones in
a given training corpus, have been widely used
[2]. Then the usually very high number of units is
decreased by clustering contexts that produce
similar effects [2] [5]. Alternatively, decision
trees have been used as a tool to obtain sets of
context dependent units [6]. This methodology
considers both, the previous phonological
knowledge of the language and the inductive
knowledge automatically learned from the
available training corpus. Nevertheless, the goal
of all these approaches is to increase a previously
established set of phone-like units by including,
and then modelling, contextual information.

It is well known that acoustic diversity is mainly
due to contextual effects in the pronunciation of
phones. However, the phonological knowledge

does not fully explain all the acoustic variability
appearing in the training corpus of a CSR system.
Moreover, the only use of this knowledge may
condition, excessively, the finally obtained sets
of units since task nor speaker dependencies are
considered [1].

Our goal was to obtain adequate sets of sub-lexical
models by using acoustic information but
excluding any previous phonological knowledge.
Such kinds of units are, as many other parts of
nowadays CSR systems, task dependent. They
summarise all the sources of acoustic variability
appearing in a given task.

A previously established set of Spanish phone-
like units [7] was used as the initial model. Then
each unit was split into a set of more accurate
models. In each split the set of samples that best
matched the current acoustic model, under a
maximum likelihood criterion, was considered t o
generate a new model. The remaining samples,
not well enough represented, were used to train a
second model. Both of them were considered for
further splitting. An iterative procedure
consisting of utterance segmentation / splitting /
new model re-estimation was carried out until
some convergence criteria were achieved [8].

Section 2 describes in detail the proposed
methodology. In Section 3 the experimental
environment used to evaluate this approach is
described. Experimental results are presented and
analysed in Section 4. Finally Section 5 presents
some concluding remarks.

2. METHODOLOGY

Our baseline system included a set of phone-like
units previously established for Spanish CSR [7].
Then, the training corpus was segmented by a
Viterbi alignment of the sequence of codewords or
acoustic feature vectors representing each
utterance with the phone-like unit sequence that
corresponds to the phonetic transcription of the



sentence uttered. As a consequence a set of
samples consisting of vector or codeword
sequences, was obtained for each sub-lexical unit.
Then, the objective was to split such sets of
samples into several subsets representing acoustic
variability of the unit. These subsets could be used
to train several new acoustic models of the
original phone-like unit.

The splitting was done under the assumption that
the probability of each set of samples being
generated by the model of the corresponding sub-
lexical unit can be approximated by a normal
distribution:

      p H Mi i i i( / ) ( , )≈ N µ σ 2

where Hi is the set of training sequences
corresponding to model Mi and     µ σi i, 2 are the
parameters of the normal distribution.

Thus we considered that samples with values
of    p x M x Hj i j i( / ), ∈ , greater than a given
threshold were well represented by model Mi

(good segments) and corresponded to the
dominant variety, whereas samples with low
probability values (bad segments) corresponded
to marginal varieties. Thus, the set of segments
corresponding to each sub-lexical unit was split
into two subsets: good and bad segments and the
initial model was then replaced by two new
models, both of them trained with the
corresponding samples. In this procedure an
evaluation function was also considered to assess
the goodness of the split (gos function). This
function was proposed in [6] and is given by:
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where Hig and Hib are the good and bad subsets of
sample Hi used to train models Mig and Mib

respectively.

Each new split required a minimum threshold for
the gos function and a minimum threshold for
the number of samples assigned to new models.

Thus, the whole training scheme consisted of two
phases:

1. The initialisation phase, where an initial
HMM model for each previously selected
phone-like unit was learnt from a small subset
of the training data which was segmented and
labelled by hand.

2. The iteration phase which consisted of three
parts:

• The entire training set was segmented by
the Viterbi alignment procedure according
to the current set of units. Then,

    p x M x Hj i j i( / ), ∈  as well as the parameters
of each distribution,   µ i  and     σ i

2 , were
calculated.

• For each current unit we considered the
split of the samples into good and bad
segments according to an heuristically
established threshold for the probability.
However the split was only considered
when the following conditions were
verified:

 - the distribution was wider enough since
sharp distributions were supposed to be
homogeneous.

 - the number of samples in both subsets
was high enough to guarantee a robust
estimation of the new models.

 - the gos function exceeded a minimum
threshold.

• The parameters of the new models were
obtained by using the Baum-Welch re-
estimation procedure.

The iteration phase finished when no splitting
was made for any unit, i.e., when one of above
mentioned stopping criteria (sharp distribution,
small number of samples or low value of the gos
function) was achieved for all the units.

3. EXPERIMENTAL ENVIRONMENT

The proposed formalism was experimentally
evaluated on a Spanish acoustic-phonetic
decoding task. A training corpus consisting of
842 sentences uttered by 43 speakers resulting in
a total of 37,921 phones was considered. Forty-
four sentences were previously segmented by
hand to initialise the phone-like models. For
testing purposes a test set consisting of 225 new
sentences uttered by 17 new speakers resulting in
a total of 12,800 phones were selected.

This corpus was acquired at 16 kHz and
parametrised, resulting in vectors of dimension
11, i.e. 10 Cepstrum Coefficients (CC) plus
energy (EN). From these parameters, we got their
respective first derivatives (∆CC and ∆EN).

All the sentences were automatically transcribed
into sequences of sub-lexical units. The initial set
of sub-lexical units used in the experiments to be
presented was composed by 23 units that roughly



corresponded to the 24 Spanish phonemes. Each
acoustic unit was represented by a left-to-right
discrete HMM of three states without skips and
only a self-loop transition in the second state.

The recognition model consisted of a simple
finite state network since any phonological
constraints were imposed (nor pair-gram, bigram,
etc.). Thus, all models were placed in parallel,
sharing a common initial state and a common
final state which were connected trough a feed
back-nil transition.

For each experiment, the following values were
computed: 1) the number of sub-lexical units that
were recognised correctly (corr); 2) the number
of sub-lexical units that were inserted (ins),
deleted (del) and substituted (subs). These values
were obtained by an editing comparison between
the output of the acoustic phonetic decoder and
the correct sub-lexical transcription of each test
utterance. From these values, the following
parameter was obtained:
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4. EXPERIMENTAL RESULTS

Two series of experiments, single and multiple
codebook, were carried out.

In the first series of experiments two single
codebook experiments were carried out. Two
codebooks of 128 and 256 codewords
respectively were obtained from vectors of
dimension 11 (CC+EN). Table 1 (128 codewords)
and Table 2 (256 codewords) show the
experimental results obtained for these
experiments.

A minimum of 50 samples per unit was required
in both experiments. The number of units and
recognition rates at each iteration of the first
experiment are shown in Table 1. The previously
established set of phone-like units was used in
iteration zero. One of the three stopping criteria
was achieved at iteration number 8 for all the
current sub-lexical models.

In the second experiment a single codebook of
256 codewords was used. Table 2 shows the same
results for this experiment.

In both experiments a small error reduction was
achieved. For comparison purposes the same
decoding experiment was carried using classical
triphones (Table 3). The threshold required for
the number of samples per unit in the training set

determined in this case the number of unit to be
used. Table 3 shows the decoding rates for single
codebook experiments when 128 codewords were
used.

Table 1: Decoding results for single codebook
experiments when 128 codewords were used.

# iteration Number of units % recognition
0 26 43.35
1 50 44.12
2 80 44.39
3 122 44.95
4 164 45.11
5 185 45.56
6 198 45.65
7 203 45.13
8 205 45.39

Table 2: Decoding results for single codebook
experiments when 256 codewords were used.

# iteration Number of units % recognition
0 26 44.14
1 48 45.58
2 80 45.63
3 124 45.91
4 183 46.45
5 216 46.92
6 237 47.19
7 245 47.21
8 247 47.15

Table 3: Decoding results for single codebook
experiments (128 codewords) when classical triphones
were used.

Threshold Number of units % recognition
175 30 44.65
105 60 45.43
70 89 44.98
35 286 45.46

Table 3 also shows a small improvement of
recognition rates with the number of units.
Nevertheless the recognition rates are similar t o
those obtained when the proposed approach was
used (Table 1).

A second series of experiments was carried out
using three different codebooks of 256
codewords: CC, ∆CC and EN+∆E. For these
experiments a minimum of 35 samples per unit
was required. Thus, a higher number of units was
obtained. In this case, one of the three stopping
criteria was achieved for all the sub-lexical units
at iteration 9. The number of units and
recognition rates at each iteration of this
experiment are shown in Table 4. This table
shows a slight reduction of error rate when the
proposed approach was used.



Table 4: Decoding results for multiple codebook
experiments.

# iteration Number of units % recognition
0 26 54.62
1 48 55.68
2 83
3 135 55.26
4 209
5 301
6 363 54.56
7 391
8 392
9 393 54.71

5. CONCLUDING REMARKS

The goal of this work was to obtain adequate sets
of sub-lexical units by using acoustic information
but excluding any previous phonological
knowledge. A procedure to split HMM«s in
Viterbi training was presented in detail. This
procedure was evaluated over a Spanish acoustic-
phonetic decoding task. The experimental results
showed that the proposed produced similar
decoding rates to those obtained when classical
triphones were used. However more exhaustive
experimentation including alternative stopping
criteria is still needed to fully evaluate this
methodology.
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