
Segmental Modeling Using a Continuous Mixture

of Non-parametric Models

Jacob Goldberger David Burshtein

Tel-Aviv University, Israel

jacob,burstyn@eng.tau.ac.il

Horacio Franco

SRI International, CA, USA

hef@speech.sri.com

Abstract

The aim of the research described in this paper is

to overcome the modeling limitation of conventional

hidden Markov models. We present a segmental

model that consists of two elements. The �rst is a

nonparametric representation of both the mean and

variance trajectories, which describes the local dy-

namics. The second element is some parameterized

transformation (e.g., random shift) of the trajectory

that is global to the segment and models long-term

variations such as speaker identity.

Introduction

Speech sounds are produced by a time-varying dy-

namic system. Consequently, speech signals are

highly correlated and nonstationary. In spite of

this fact, in most implementations of hidden Markov

models (HMMs) to speech recognition, the assump-

tion that successive observations in a state are inde-

pendent and identically distributed is inherent to the

model. These limitations of the HMM are due to the

fact that the HMM is a frame-based approach. An

alternative approach is segmental modeling, where

the basic modeling unit is not a frame but a phonetic

unit. This family of models relaxes the assumptions

of both stationarity and independence within a state,

typical of standard HMMs. Deng et al. [1] used a re-

gression polynomial function of time to model the

trajectory of the mean in each state. A nonparamet-

ric description of the mean trajectory was suggested

by Ghitza and Sondhi [4]. More recently, Kimball

[6], suggested an approach that models each segment

by a discrete mixture of nonparametric mean trajec-

tories. In this paper we propose a new random seg-

mental model. The main idea of random models is

to consider the mean trajectory not as �xed param-

eters but as a random variable that is sampled on

each state arrival. Russell and Holmes [5] proposed

a random extension of the model suggested by Deng,

by assuming a parametric segmental model with ran-

dom coe�cients. We suggest here a random nonpara-

metric approach. Our proposed model is compared

to alternative segment models by using a triphone

recognition task. In addition, we present recognition

results on a large vocabulary task.

Random Nonparametric Models

In this section we present a new segmental model

which is composed of two elements. The �rst element

is a nonparametric representation of the mean and

variance trajectories, and the second is some param-

eterized transformation (e.g., random shift) of the

trajectory that is global to the segment. The mean

trajectory curve is represented using a nonparamet-

ric description. That is to say, instead of using a

polynomial or some other parametric description, the

curve is represented by specifying a list of sampled

points along the curve. More precisely, we assume

that each segment may be represented by a left to

right HMM structure, such that each HMM state

is represented by a single Gaussian HMM. The se-

quence of mean values of the HMM state sequence

constitutes a template of the mean trajectory. Like-

wise, the sequence of variances of the HMM state

sequence constitutes a template of the variance tra-

jectory. Time warping of the template trajectory

is made possible by controlling the state sequence

of the HMM (e.g., companding may be realized by

rapid transitions out of states). The second element

of the model is a parameterized transformation of

the trajectory, global to the entire segment. Let the

state sequence of some given segment realization be

denoted by s = (s1; s2; : : : ; sT ), and let the corre-

sponding observation vector sequence be denoted by

x = (x1; x2; : : : ; xT ). To simplify notation it will be

assumed that all observations are scalars. This as-

sumption is not necessary. We assume the following

model:

xt = Ta (�(st); �(st); t)

where �(st) and �(st) are the mean and variance

associated with state st, and Ta(�) is some random

transformation indexed by a. a is a random vari-

able that is chosen once per segment realization. The

transformation that we focus on in this paper, is a

random displacement of the mean trajectory. In that



case Ta(�; �; t) = �+ a+ �t(�). Hence,

xt = �(st) + a+ �t(�(st)) (1)

Here, a is a zero mean, normal random variable, sam-

pled once per segment, that represents the global dis-

placement of the current segment realization. �t(�)

is a zero mean, Gaussian random variable.

a � N(0; �2
a
) ; �t(�) � N(0; �2)

The e�ect of the displacement variable may be in-

terpreted as a continuous mixture of parallel curves

that represent the mean trajectory along the seg-

ment. The distribution of a is the continuous seg-

mental analog to the mixture coe�cients in standard

HMM. That is to say, in standard HMM a discrete

mixture component is chosen once per frame, that is,

it is a frame-based approach. In a random segmental

model, however, a continuous mixture component is

chosen once per segment realization.

Our model was motivated by extensive examina-

tion of segment data realizations. In Fig. 1, sev-

eral realizations of the �rst cepstral coe�cient in the

triphone ih-s-ow are presented (The database used

was the speaker-independent, large-vocabulary, Wall

Street Journal (WSJ) corpus [2]). The data is pre-

sented after nonlinear time warping of the segment

realizations, so as to achieve time alignment between

the various realizations.
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Figure 1: Data after nonlinear time warping

We now present recognition and training algo-

rithms for the new proposed model. The input to

the recognition algorithm is a segment realization.

The output of the algorithm is the identity of the

segment. Exact computation of the true probability

f(x) is not feasible. As an alternative, we propose us-

ing maxs f(x; s), which is an analog of the standard

approximation of maximum likelihood (ML) word es-

timation by ML sequence estimation (Viterbi decod-

ing). The following is an iterative algorithm to eval-

uate maxs f(x; s) = f(x; ŝ) numerically:

1. Initialization: â = 0.

2. Compute ŝ = argmaxs f(x; s; â) by applying

Viterbi segmentation on the data after displace-

ment elimination (i.e., x1� â; x2� â; : : : ; xT � â).

3. Compute â = argmaxa f(x; ŝ; a):

â =

P
t

1

�2(ŝt)
(xt � �(ŝt))

P
t

1

�2(ŝt)
+ 1

�2
a

(2)

4. Repeat stages 2 and 3 until convergence.

5. Compute:

f(x; ŝ) = (
1

�2
a

+
X

t

1

�2(ŝt)
)�

1

2

p
2�f(x; ŝ; â) (3)

The proposed training algorithm is a combination

of the algorithm above and the well-known Baum-

Welch training procedure. Given a sequence of N

segment data realizations x1; x2; : : : ; xN , denote by

ai the segmental mixture coe�cient of xi. Training

consists of the following iterative steps:

1. Initialization: ai = 0 i = 1; 2; : : : ; N

2. Apply the Baum-Welch algorithm to xi � ai to

obtain a new set of segment template parameters

(state means, variances, and transition proba-

bilities). Then apply the Viterbi algorithm to

compute state segmentation ŝi.

3. Apply equation (2) to obtain:

ai = argmaxa f(x
i; ŝi; a).

4. Given a1; a2; : : : ; aN , update the variance of the

random displacement, a:

�2a =
1

N

NX

i=1

(ai)
2

5. Repeat stages 2 through 4 until convergence.

A major decision that needs to be made concerns

the number of states used in our model. On the one

hand, trajectory descriptions with large numbers of

states are more accurate. On the other hand, when

a large number of states are used, the training algo-

rithm needs to estimate a large number of parame-

ters. Hence, in that case, it is essential to properly

initialize the training algorithm. Otherwise, the al-

gorithm does not produce meaningful results.

The following initialization algorithm is proposed.

1. Given the segment data realizations, x1; : : : ; xN ,

an initial segment template is determined. The

length, M , of this template is set equal to the

average length of the given segment realizations.

Then each segment realization is linearly time

warped to size M . Finally, the initial segment

template is set to the mean of these linearly

time-warped segment realizations.



2. A dynamic time warping (DTW) routine is used

to time align each segment realization xi against

the template segment.

3. The time-aligned segment realizations are aver-

aged together to obtain a new template.

4. Stages 2 and 3 are repeated as much as required.

Typically, two iterations are su�cient.

5. Finally, M vectors of means and variances of

the HMM states, constituting the initial tem-

plate, are obtained by averaging the last version

of time-aligned segment data realizations.

Note that the initialization routine does not employ

random displacement modeling.

The DTW forces continuity constraints on the

mean trajectory. Viterbi decoding does not incor-

porate such constraints, and thus does not produce

reliable initialization.

The recognition and training algorithms described

here are useful for re-scoring an N-best list. Note that

because mean trajectory time warping is allowed, seg-

mentation inaccuracies at the previous stage can be

tolerated.

Experimental Results

We evaluated our model by using the ARPA large-

vocabulary, speaker-independent, continuous-speech,

Wall Street Journal (WSJ) corpus [2]. Experiments

were conducted with DECIPHER, SRI's continuous

speech recognition system [3].

Our model was implemented using the N-best re-

scoring paradigm, by re-scoring the list of the N-

best sentence hypotheses generated by DECIPHER.

Context-dependent phonetic models were used. A

segmental model was constructed for each triphone

appearing in the training data set. The test set con-

sisted of 200 sentences. Table 1 compares acoustic

performance. Table 2 address the issue of adding the

segmental model as another knowledge source to a

complete recognition system.

model word error

HMM acoustics 22.1

segmental acoustics 21.4

Table 1: Word error rate results without language

model.

Tables 1 and 2 show that the new model is com-

parable to a state-of-the-art HMM system, with so-

phisticated tying of parameters. To probe the new

model further and to compare it to alternative mod-

els, we carried out several triphone recognition ex-

periments. Context-dependent phonetic units were

model word error

HMM acoustics + linguistics 8.1

HMM acoustic + linguistics 7.8

+ segmental acoustics

Table 2: Word error rate results with language

model.

chosen because, in that case, there are fewer discrep-

ancies between utterances. Hence, in practice, this is

usually the case of interest.

Table 3 presents recognition results for some fre-

quently occurring triphone contexts. The �rst data

row indicates the number of triphone occurrences for

each context. Half of the occurrences were used to

train each model. The other half were used to test the

models. There were six triphones in the �rst context

(s[k]ih, s[l]ih, s[m]ih, s[p]ih, s[t]ih and s[w]ih), �ve tri-

phones in the second context (n[ay]t, n[eh]t, n[ey]t,

n[ih]t and n[ow]t), �ve triphones in the third con-

text (aa[k]t, aa[n]t, aa[p]t, aa[r]t and aa[s]t), ten tri-

phones in the fourth context (ih[b]eh, ih[d]eh, ih[f]eh,

ih[jh]eh, ih[l]eh, ih[m]eh, ih[p]eh, ih[r]eh, ih[s]eh and

ih[v]eh), and seven triphones in the �fth context

(g[aa]t, g[ae]t, g[ah]t, g[ax]t, g[eh]t, g[ey]t and g[ih]t).

The following models were examined:

1. An HMM having a mixture of Gaussians. Such

a model with s states and m mixtures is denoted

by HMM(s,m).

2. A segmental polynomial model [1] with deter-

ministic coe�cients. Such a model with s states

and a polynomial of order K describing the

mean trajectory of each state is denoted by

POLY(s,K).

3. A segmental random polynomial model [7] with

multinormal coe�cients. Such a model with s

states and a polynomial of order K describing

the mean trajectory of each state is denoted by

POLYRND(s,K).

4. The new proposed model with random displace-

ment modeling. Such a model with s states is

denoted by NPRMDISP(s).

5. The new proposed model without random dis-

placement modeling, that is, a standard non-

parametric model. Such a model with s states is

denoted by NPRM(s).

As can be seen, in four out of the �ve contexts

presented, global random displacement, nonparamet-

ric modeling (NPRMDISP) is preferable to standard

nonparametric segmental modeling (NPRM). The

new model also compares favorably with the other

models that were examined.



s[�]ih n[�]t aa[�]t ih[�]eh g[�]t
# 1088 740 2263 1619 662

HMM(3,3) 90.7 85.2 96.6 89.3 64.1

POLY(3,2) 89.0 82.7 95.9 87.5 66.8

POLYRND(3,1) 89.6 79.2 96.3 87.4 64.4

NPRM(9) 90.7 78.7 94.5 89.9 58.7

NPRMDISP(9) 91.6 85.4 96.5 87.9 67.1

Table 3: Triphone recognition rate results

The experiments summarized in Table 3 were re-

peated for many other frequently occurring triphone

contexts. For most triphone contexts that were ex-

amined, random displacement modeling improved

the standard nonparametric model. Nevertheless, in

many other cases, random displacement modeling de-

creased the recognition rate. Hence, for some of the

triphones, a standard nonparametric model (i.e., a

degenerated displacement model that employs �xed

zero displacement) is expected to be preferable. On

the other hand, we observed that a random displace-

ment model always assigns higher likelihood values to

previously unseen data, and hence has an improved

prediction capability. Therefore, the maximum like-

lihood criterion cannot be used to decide when (i.e.,

for which triphones) the random displacement model

should be avoided.

Conclusions

We presented a new model that is a continuous

mixture of segment trajectories. This model is com-

posed of two elements. The �rst element is a non-

parametric representation of the mean and variance

trajectories, and the second is some parameterized

transformation of the trajectory that is global to

the entire segment. This transformation adapts the

general model to a speci�c segment realization, and

may, for example, account for di�erent speech styles.

We then focused on a particular transformation that

applies a random displacement to the mean trajec-

tory. The model was compared to alternative seg-

ment models on a triphone recognition task. The

model improves segment modeling in the sense that

it improves the prediction of previously unseen data.

Our triphone recognition experiments show model ef-

�cacy for most of the contexts examined when com-

pared with a standard nonparametric model without

global displacement modeling.

The results presented using this model suggest sev-

eral topics for future study. First, other global tra-

jectory transformations need to be examined. Sec-

ond, we have seen that a global, random displace-

ment transformation always improves the ability of

a nonparametric model to predict previously unseen

data. However, the new model was not always su-

perior in the triphone recognition experiments. The

maximum likelihood criterion cannot be used to de-

cide for which triphones random displacement mod-

eling should degenerate to a �xed zero displacement.

Other criteria need to be investigated to successfully

implement a combined model, for which some of the

triphones employ such degenerated transformation.
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