
CREATING LARGE SUBWORD UNITS FOR SPEECH RECOGNTION

T.Pfau, M.Beham1, W.Reichl2, G.Ruske

Institute for Human-Machine-Communication, Technical University of Munich, Arcisstr. 21, D-80290 München, Germany
1pc-plus-COMPUTING, Grillparzer Str.10, D-81675 München, Germany

2Dialogue Systems Research Department, Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, USA
Tel.: +49 89 289-28554, Fax: +49 89 289-28535, E-mail: {pfa, rus}@mmk.e-technik.tu-muenchen.de

ABSTRACT
This paper deals with the choice of suitable subword
units (SWU) for a HMM based speech recognition
system. Using demisyllables (including phonemes) as
base units, an inventory of domain-specific larger sized
subword units, so-called macro-demisyllables (MDS), is
created. A quality measure for the automatic decompo-
sition of all single words into subword units is presented
which takes into account the trainability of the chosen
units. To create the whole inventory an iterative
procedure is applied with respect to the predefined
quality measure. Each MDS is represented by a
dedicated HMM. By tying the densities of specific
phonemes, only the number of mixture coefficients and
transitions increases in comparison to the original
phoneme models. Recogniton experiments within the
German Verbmobil evaluation 1996 show that the new
simple MDS models are as powerful as standard
triphone models, although our MDS models are up to
now context-independent.

1. INTRODUCTION
In most state of the art speech recognition systems, the
acoustic modeling is performed by HMMs which
generally represent subword units. In contrast to the
well-known context-dependent phonemes (for example
triphones) we want to use larger sized subword units
which explicitly contain as many phonemes as possible.
The larger the units, the better the coarticulation effects
should be handled by the units directly. In many speech
recognition tasks training data and application voca-
bulary belong to the same domain. For these tasks the
inventory of SWUs can be chosen according to the
words in the training database and according to their
frequency. Our aim is to determine this inventory
automatically for a given training database by using a
predefined quality measure. On the one hand the SWUs
must be large enough to capture most of the contextual
effects on their realization, on the other hand their
frequency of occurrence in the training speech data must
be sufficient for a robust estimation of the HMM
parameters. It is obvious that larger units, up to whole
words or phrases, will be more rare in the training data.

So we have to achieve a compromise between the length
of the chosen units and their frequency of occurrence.

2. CHOOSING APPROPRIATE BASE
UNITS

In contrast to the ISADORA system [1][2], we do not
want to select a hierarchical order of several phone-
tically meaningful layers to represent the phonotactic
structure of the subword speech units (SWU). Our units
will be created automatically from given base units. By
choosing phonemes as base units, both margins of a unit
are modeled independently of the phoneme context.
This might be a certain disadvantage when compared
with triphones which are always modeled context-
dependently. To avoid this disadvantage, we start from
demisyllables [3] (including all phonemes) as base units
to build larger SWUs. Most of the phonotactic
constraints are represented implicitly within the
demisyllables, which therefore nearly can be modeled
context-independently. The inventory of the German
demisyllables consists of about 54 initial consonant
clusters, about 160 final consonant clusters (the latter
can be divided in about 24 „rudiments“ and about 20
„suffixes“), and about 130 vowel clusters including
diphthongs and „syllabic consonants“ [3].

The chosen base units are concatenated to particular
larger units; we call them macro-demisyllables (MDS).
Each of these MDS is represented by a dedicated HMM.
The size of such a model varies from a single
demisyllable up to whole words or phrases. Our aim is
to build large and phonetically highly specific units
under the constraint of satisfactory frequency of
occurrence in the training data to achieve statistical
significance during HMM parameter estimation. For
speech recognition systems like the German Verbmobil,
for which the training speech data and the application
vocabulary are from the same domain, it is possible to
automatically build an inventory of MDS, which is in a
certain way optimal with respect to both specific
modeling and trainability.

3. CONSTRUCTION OF A MDS
INVENTORY

It is not possible to create all sets of MDS which cover
the given vocabulary and to choose the one set which



meets a certain global optimization criterion. Therefore
we developed a suboptimal iterative procedure to
decompose the given vocabulary in a set of MDS that
maximizes a predefined quality measure. The quality
measure for a single word has to take into account both
the frequency of occurrence of all those MDS, which are
used to represent the whole word and in addition the
number of MDS used (see Figure1).

We define a value

q(MDSk) = sigmoid(Fmin, Fmax, freq(MDSk))

with 0 < q < 1.0 as the rating of the frequency freq of
the unit MDSk in the training data, which rises strong
monotonously with its frequency.

The meaning of the two specified parameters Fmin and
Fmax, which fix the turning point of the sigmoid
function, is the following: a particular MDS is entered
in the inventory if and only if its number of occurrence
in the training data exceeds a lower bound Fmin in order
to guarantee statistical stability during HMM training.
An upper bound Fmax leads to a saturation of q, making
sure that all MDS exceeding this limit have nearly the
same value. The quality measure for one specific
decomposition of the whole word Wi in k MDS is simply
defined as the product

Q(Wi) = q MDSk
k Wi
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The qualities q of all k MDS build the quality of the
whole word. The average of the qualities of the whole
vocabulary can not be maximized exactly. This is the
reason why we developed an iterative algorithm which
maximizes the quality Q of word Wi independently of all
other words. Roughly, the construction of a MDS
inventory proceeds as follows:
1. Build all possible MDS given in the training data

with sizes from demisyllables alone (including all
single phonemes) up to whole words.

2. Calculate the frequency rating of every MDS by
using the number of occurrence in the training
speech data.

3. Eliminate those MDS for which the frequency of
occurrence does not exceed the lower bound Fmin.

4. Determine the decomposition of every word by
maximizing the product Q(Wi). During this step all
frequency ratings q(MDSk) of the MDS remain
constant regardless of the use of these MDS in other
words. This maximization can be performed by a
recursive algorithm similar to the Viterbi segmen-
tation. Figure 2 shows all possible decompositions of
the word „Beispiel“ into demisyllables. Every path
through the graph, displayed in Figure 2, represents
one possible decomposition of the word. During the
maximization process the path with the highest
quality measure Q(Wi) is searched using the Viterbi
algorithm.

5. Count only the MDS actually used after the
decomposition of the vocabulary and calculate a new
q(MDSk) for all these macro-units.

6. Proceed with step 3.

In the tested Verbmobil database (CDs1-5, CD7 and
CD12) about 40000 possible MDS of sizes from one up
to 15 phonemes can be found. About 5000 units meet
the lower frequency bound criterion of step 3. With the
chosen parameters (see Table 1) a stable inventory of
595 MDS is determined after 7 iterations. This can be
seen as an optimal set to decompose the 7000 word
training vocabulary with respect to the predefined
quality measure.

Fmin Fmax number of
iterations

number of units

20 50 8 738
20 100 6 607
50 100 7 595
100 500 4 264
Table 1: Number of iterations until a stable set of

units is reached

Figure 2: All possible decompositions of the word
„Beispiel“ into demisyllables0 50 100 150 200
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Figure 1: Sigmoid function for the determination of
the quality q of a single MDS



4. SETUP OF MDS HMMs
The macro-unit HMMs can be initialized by simply
concatenating the states of all corresponding phoneme
HMMs. This leads to a dramatical rise in the number of
states in the inventory from about 170 (phoneme HMM)
to about 7300 states (MDS-HMM). Using continuous
densities (gaussian mixtures), we limit the number of
total densities to those of the original phoneme HMM
models by tying the densities of the specific phonemes.
To allow more flexibility in comparison to the simple
concatenation of the states with their densities, the states
of the resulting MDS-HMMs can not only use their own
densities included in their own phoneme-specific
codebooks but also the densities of adjacent states within
a predefined radius of influence.

Figure 3 shows an example for the MDS of the German
word „mein“ (/m aI n/). The basic phoneme models
(/m/, /aI/ and /n/) consist of three states (s0, s1, s2)
each. These states are combined to a nine-state sequence
(s0’...s8’) representing the MDS „mein“. In the upper
part of Figure 3 the original phoneme HMMs with
continuous densities (codebooks CB0...CB8) and
specific sets of mixture coefficients (mix0...mix8) can be
found. The resulting MDS-model is represented in the
lower part. The number of states simply results from the
sum of all phoneme states. In addition to the original
codebooks - used in the corresponding phoneme states -
the new states have access to the codebooks of the
neighboring states, too. The use of the neighboring
codebooks depends on the defined radius of influence
(radius 0 for example represents the original condition).
In this way the radius controls the „focus“ of the

individual states. As a consequence, the mixture sets
(mix0’...mix8’) of the new states have to be enlarged
corresponding to the number of densities in the
neighboring codebooks. Figure 3 shows the conditions
when using radius 1. For example the mixture set mix1’
in state s1’ refers to the codebooks CB0, CB1 and CB2.
Taking into account the neighboring codebooks the
HMMs are able to deal with coarticulation effects
directly.

Together with the transition probabilities the MDS units
thus allow to model the individual lengthening or
shortening (up to an omission) of phonemes in the
context of the adjacent phonemes, when the radius of
influence is chosen appropriately. The mixtures are set
during the training procedure according to the
individual conditions within each MDS-model.
Pursuing our simple tying strategy only the number of
mixture coefficients rises when compared to the
phoneme models. The number of mixture coefficients
used rises from about 20000 (phoneme HMMs) to about
1.14 Mio (MDS radius 1) after some training iterations.
After initialization the MDS-HMM parameters are
reestimated using Viterbi training, including the
removement of very small mixture coefficients. This
reduces the number of parameters in the resulting MDS-
models significantly.

5. EXPERIMENTAL RESULTS
In this paragraph some of our recognition experiments
made with our macro-demisyllable models are
presented. To evaluate the performance of our MDS-
models the MDS-model approach participated at the

Figure 3: Concatenation of the phonemes /m/, /aI/ and /n/ to the MDS /maIn/ using
the densities (codebooks CB0-CB8) of adjacent states (radius 1)



evaluation 1996 [4] of the German Verbmobil task. The
training database of the evaluation 1996 task consists of
about 27 hours of spontaneous speech dialogues in the
field of timetable appointments, and the test database
consists of about 41 min of spontaneous speech
dialogues in the same domain.

The training is carried out using the standard Viterbi
algorithm. The search engine uses a tree-based lexicon
with one single pronunciation per word and a beam
search algorithm including a histogram pruning
procedure for means of efficiency.

The experiments were carried out with our new MDS
models and - for comparison - with standard triphones
as well as with the original context-independent
phoneme models (see Table 2).

Basic phoneme HMMs for building the MDS-models:
54 context-independent continuous phoneme HMMs
(three or four states each) with a total number of 176
states and 161 codebooks (some states share the same
codebooks). The codebooks use a total number of 18808
diagonal gaussian densities of 66 dimensions. The
HMM transitions between the states of the HMMs are
trained individually for each model-state. The total
number of mixture coefficients is about 20000.

MDS models:
595 continuous MDS-HMMs (from three up to 39
states) with a total number of 7273 states using the
newly estimated densities of the original 161 phoneme
codebooks with 18808 diagonal gaussian densities of 66
dimensions.

Triphone models:
2100 triphone models (inclusive across word modeling)
chosen by their frequency of occurrence.

type of models word
rec. rate

word
error rate

total no of
parameters

phonemes 69.2% 35.4% 2.5 Mio
MDS (radius 1) 78.2% 25.8% 3.6 Mio
triphones 78.5% 25.2% 3.5 Mio

Table 2: Recogniton results on the Verbmobil
evaluation 1996

These first results show that simple context-independent
macro-demisyllables are almost as good as context-
dependent triphones. The efficiency of MDS units can
be further increased, when additionally the context at
the unit boundaries is taken into consideration. This is
already done by triphones. Thus the MDS units seem to
be a potential basis for further improvement. These
experiments are currently under investigation.

6. CONCLUSION
In this paper a method for selecting domain-specific
larger sized subword units for speech recognition
systems is presented. It is an automatic, iterative and

data-driven method for the selection of appropriate
context-freezing units by using a quality measure based
on the frequency of occurrence of the chosen units. The
increase in the number of parameters is limited - by a
simple tying mechanism - to an increase in the number
of mixture coefficients. By this means the number of
parameters increases by 44% and the word error rate is
reduced by 27% both relative to the phoneme models.

Our future work in this area will concentrate on the
modeling of the context-dependency of the chosen
MDS-units. First the left and right margins of each
MDS-unit can be modeled context-dependently similar
to the common triphone or polyphone approach.
Another aspect is that the codebooks, which are used in
the MDS-states, are still phoneme-specific. This
disadvantage can be overcome by introducing MDS-
specific codebooks. Then appropriate tying mechanisms
must be applied to reduce the increasing number of
parameters.

Another possible area for improvement is the
mechanism of decomposition of words into SWUs. Not
only the frequency of occurrence of a subword unit but
also the likelihood (maximum likelihood strategy) in the
training process should be considered by the quality
measure during the iterative selection procedure. Thus
the set of units could be selected with respect to the best
increase in the overall likelihood.
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