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ABSTRACT

A technique for predicting triphones by concatenation of
diphone or monophone models is studied. The models
are connected using linear interpolation between end-
points of piece-wise linear parameter trgjectories. Three
types of spectral representation are compared: formants,
filter amplitudes and cepstrum coefficients. The
proposed technique lowers the spectral distortion of the
phones for al three representations when different
speakers are used for training and evaluation. The
average error of the created triphones is lower in the
filter and cepstrum domains than for formants. This is
explained to be caused by limitations in the Analysis-by-
Synthesis  formant tracking agorithm. A small
improvement with the proposed technique is achieved for
al representations in the task of reordering N-best
sentence recognition candidate lists.

1. INTRODUCTION

Large vocabulary recognition requires accurate
modelling of the acoustic properties of the phoneme
inventory. Triphones are commonly used for this
purpose, since they account for coarticulation between
adjacent phones. However, the number of triphonesin a
language is high and large speech corpora are required
for the training of their acoustic properties. A common
back-off strategy for missing or infrequent triphonesis to
use shorter units, diphones and monophones, that occur
more frequently in a training corpus. A problem with
these units is, however, that at least one boundary is
context-independent and, thus, they have larger variation
and accordingly lower phonetic discrimination. To
improve recognition accuracy it is important to model
non-trained and non-frequent triphones more accurately.

We have previously presented a technique for predicting
unseen triphones by concatenating phone models with
shorter context, such as diphones and monophones [1].
In this technique the advantages of better trained di- and
monophones and the higher phonetic discrimination of
the triphone models are combined. A three-segment poly-
line approximates the parameter trajectories during each
phone. The corner points are individual in time for each
parameter. Concatenation of two diphones with the same
mid-phone identity, a diphone pair, into a triphone is
performed by picking the first two line end points from
the left-dependent diphone and the last two from the
right-dependent one. The mid line segment is estimated
using linear interpolation. The new line representation is

then converted to subphone spectral states for
recognition.

This is compared to a baseline technique, which selects
in order a state diphone pair, a diphone or a monophone
if the requested triphone has too few occurrences in the
training data. The spectral states of the state diphone pair
are copied from the first states of the left-dependent
diphone, and from the last states of the right-dependent
one. Approximately the same number of states is picked
from the two diphones, which may differ in their number
of states.

In previous work [1], we have studied the technique in
the formant domain, using an Analysis-by-Synthesis
(AbS) technique for formant tracking. The choice of this
representation was made from the assumption that
formant envelopes are more linear in time and therefore
better suited for linear interpolation than other types of
spectral representation. The results showed that interpo-
lation worked quite well. An agorithm for modelling the
coarticulation effect between the context at the opposite
sides of a phone improved the performance further. As
suggested [2], that work is extended in the current report
to test this assumption. We include two other sets of
acoustic representation: logarithmic amplitudes of a
Bark-scaled 16 channel filterbank and 16 cepstrum
coefficients derived from that filterbank. The filterbank
covers the frequency range 200 - 6000 Hz.

The proposed technique can be applied in a more
straight-forward way for filter amplitudes and cepstra
since formant tracking is not performed. It is, however,
uncertain if the time evolution of these parameters can be
appropriately approximated with the chosen line
representation. For example, higher order cepstrum
coefficients tend to change less smoothly and lose some
detail in the linear approximation [3].

Another possibility with the line segment approach, not
yet implemented, is to avoid the limitation given by the
stationarity assumption in a conventiona HMM
recognition system. An overview of segmental HMMs is
givenin [4]. A comparison of static and linear segmental
HMMsisgivenin[3].

1.1 Biased diphone concatenation

A problem with concatenating two diphones into a
triphone is the large phonetic and acoustic variation at
the non-specified side of each of the diphones. It is likely
that a properly selected subset of the training data for the
diphone model is better in predicting the reguested
triphone than using all observations. We apply this idea
by computing a biased diphone, where the individual
observations are weighted according to the similarity of



the non-matching context side to the requested context.
Currently, the weighting factor is based on spectra
similarity between the monophone models of the non-
matching and the requested phones.

2. EXPERIMENTS

The WAXHOLM speech data base [5] is used for evalu-
ating the proposed technique. Currently, around two
hours of spoken dialogues from 66 speakers; 49 male and
17 female, have been collected. Of these, 56 subjects
were selected for training. The test corpus consists of
327 sentences (1672 words) spoken by 6 mae and 4
female speakers, not in the training group.

The performance of the different approaches has been
measured by using three triphone libraries. The first two
are trained on separate halves of the training corpus.
They contain the same speakers but with different
utterances. One library, the training library, is used for
creating triphones from shorter units. The second library
is used for cross-validation. The third library is trained
on the recognition test data.

2.1 Evaluation techniques

The different ways of modelling triphones are currently
investigated in the following ways:

2.1.1 Acoustic representation

The three acoustic representations are compared in their
precision in line approximation of an input utterance and
in their ability to predict unseen triphones. For every
triphone identity in the library for evaluation (cross-
validation or test), we measure its spectral distortion
against trained and created triphones in the training
library. The distortion metric is a squared Euclidean
distance between average values of time-normalised
sequences of filterbank sections, into which the cepstral
and formant representations are transformed.

2.1.2 Observation frequency dependence

The created triphones will be used when the number of
natural observations during training is low. Hence, it is
especialy interesting to study their accuracy in these
cases. In order to find a good threshold below which to
use concatenated units, we have studied the spectral
errors as afunction of triphone frequency of occurrence.

2.1.3 Recognition accuracy

Experiments have been performed by rescoring N-best
sentence candidate lists produced by the recogniser used
within the WAXHOLM project [6].The used N-best lists
contained 10 candidates on average and enabled an over-
all word accuracy between 49% and 87%. The average
accuracy for the top candidate was 77.1%. After these N-
best lists were generated, higher accuracy results have
been produced in the ongoing devel opment work

It is not certain that, out of a number of incorrectly
recognised sentence candidates, the one with the fewest
word errors also is the most correct with respect to its
phoneme sequence. To avoid random fluctuations in the
performance caused by this effect when the correct word

sequence is missing in the N-best list, the correct identity
was added as an extra candidate to the list. Out-of-
vocabulary words were included in the lexicon for the
same reason. These modifications improve the results
above the performance in a normal test situation, but
make it more likely that a better configuration is reflected
in higher performance.

The back-off models in the concatenated triphone case
are used in the following order: natural triphones, line
concatenated diphone pairs, diphones and monophones.
Biased diphones are not included due to the high com-
putational requirements in their estimation. In order to be
of practica use they should be computed off-line in
advance of the recognition experiment.

The recogniser used in the experiments is described in
[7]. The recognition algorithm performs a Viterbi search
in the filterbank domain into which the formant and
cepstral representations are transformed. Dynamic source
adaptation is performed during the search in order to
compensate for deviant voices. The system can model
duration by a logarithmic Gaussian distribution or by an
exponential function. To keep computational time
reasonable, we have used the latter model in this report.

For the rescoring purpose, the candidates are merged into
alexical net, in which a new top candidate is searched.
Non-unique context at either or both sides of a phone due
to branching are made unique by splitting the phone into
as many duplicate copies as given by multiplying the
numbers of different preceding and following phone
identities. This technique enables triphone modelling of
every phone in the lexica net, including word
boundaries.

3. RESULTS

3.1 Acoustic representation
As shown in Figure 1, modelling the trajectories of filter
amplitude and cepstral coefficients by line segments with
two corners per phone approximate an utterance with
somewhat higher precision than do state average spectra
with an average of 3.0 states per phone.
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Figure 1. The average distortion of an input utterance in

the training corpus for 2-corners-per-phone line

approximation in the different representations. The lefi-
most bar shows the average frame-wise AbS error.

=
o

Spectral error
[&)]

o

Line approximation in the formant domain results in a
considerably higher error. The difference is interpreted
mainly to be due to the residual spectral error in the AbS
algorithm rather than in the line approximation
procedure. This error congtitutes a large part of the



formant line approximation error. The distortion increase
in the line approximation procedure is more close to the
line errors of filters and cepstra. The frame-wise
modelling error for the two latter types of representation
is zero. The cepstral modelling error would be non-zero
if fewer coefficients were used. This would also occur in
the filter domain if the frequency resolution during
evaluation were higher than that of the training library.
When comparing trained phone models there is no access
to the input utterances. In this case, we use as reference
the filter line representation, which according to Figure 1
has the lowest error to the real speech signal. Figure 2
shows the effect of varying number of states per phone.
Lines are dlightly better than five states per phone.
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Figure 2. Average distortion between triphones of the
same identity in two different libraries, as a function of
number of states per phone. The right-most bar shows
the distortion when a line representation is used. The
results are based on filter domain approximation.

As shown in Figure 3, the concatenation/interpolation
techniqgue works well in the filter and the cepstra
domains. In the cross validation data, these representa-
tions yield lower spectral distortion than formants. In the
test data, the spectral error increases substantialy for all
representations. This effect seems to mask the
differences between the representations and formants
perform almost as well as filters and cepstra. In average,
both diphone pairs predict the test data better than
triphones. Line concatenation is better than state
concatenation for all three types of representation forms.
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Figure 3. Observation frequency-weighted average
spectral errors for concatenated diphone pairs and
trained triphones. Results are shown for three types of
spectral representation in the cross validation (same
speakers) and the test data (different speakers). Labels:
T - triphones, DP - diphone pairs.

3.2 Observation frequency dependence

The results in Figure 4 show that the concatenation tech-
niqgue is especialy vauable when the observation

frequency of atriphone is low. Thisis believed to be the
reason for the superiority of diphone pairs to triphonesin
Figure 3. When the triphone is missing completely in the
training corpus, the spectral errors are 174.3 and 169.6
dB? for state and line concatenated diphone pairs,
respectively. The errors of biased diphone pairs are not
shown, but are close to the two types of diphone pair.
The trained triphone errors seem to be lower than the
other techniques for observation frequencies above 10.
This number is set as back-off threshold during the
recognition experiments.
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Figure 4. The average filter domain spectral error in the
cross-validation library as a function of number of
observations of the triphone in the training data.

3.3 Recognition accuracy

Table 1 shows results of the performed recognition tests.
Splitting phones that branch in the lexical net results in
increased error rate if trained phone units are used. This
indicates that the back-off threshold of 10 observations is
lower than optimal. In this case, the use of low-frequent
triphone models instead of diphones lowers the
performance. If created triphones replace the low-
frequent triphones, the errors decrease to a lower value
than the original configuration for all three types of
representation.

Table 1. N-best reordering performance under different
acoustic representation, split / no split of branching
phones and trained or line concatenated triphones.

Acousticrep- | Split / | Trained / Word
resentation no split | concatenated | errors
(%)
Cepstrum no split | trained 13.2
split trained 134
split concatenated | 12.4
Formants no split | trained 136
split trained 14.6
split concatenated | 12.7
Filters no split | trained 11.9
split trained 124
split concatenated | 11.7




4. DISCUSSION

The proposed technique for creating unseen triphones
work somewhat better in the filter and the cepstra
representations than in the formant domain regarding
spectral errors as well as recognition accuracy. Still, the
difference in recognition performance is not very large.
The results make the technique suitable for incorporation
in practical recognition systems since the problems of
formant estimation can be avoided.

The most important improvement in order to raise the
performance of the formant parameters is to lower the
modelling error of the Analysis-by-Synthesis agorithm.
This requires a more accurate speech production model
and more effective procedures to search for optimal
trajectories.

Creating triphones by concatenation and line interpola-
tion of diphones and monophones lowers the spectral
errors compared to trained triphones, especially for those
identities that have few observations in the training data.
The errors are also somewhat lower than state-connected
diphone pairs. There is still room for improvements of
the procedure since the difference to the average errors
of high-frequent triphones is only reduced to a small
degree. The recognition performance is improved in all
three types of acoustic representation, athough only
marginally in the filter domain.

The results suggest that there is little performance
improvement to gain by mere line representation of
trajectories in order to avoid the stationarity assumption
in conventiona HMM. The average reduction of the
distortion from 3 states/phone is around 15% and from 5
states/phone there is only a 1-2% decrease. Increasing
the number of states per phone could be an alternative,
since the resulting distortion is amost as low and
implementation is easier. However, a remaining draw-
back compared to segmental HMM will be the
independence assumption between the states.

The metric used for comparing phone models does not
account for differences in the shape of the probability
density functions. In future work, simple distance
between phone model averages should be replaced by
measures that better accounts for these differences, such
asrelative entropy or mutual information.

The average spectra error on the cross validation datais
substantially lower than the error on the recognition test
data. This may be explained by the fact that the training
data and the cross validation data are very similar. They
contain the same speakers and every second utterance of
each dialogue session, which also makes it likely that
their word occurrences are similar. The relative
inferiority of the formant representation compared to the
filter and the cepstral domains is reduced in the test
corpus. This indicates that sources of larger variation are
involved when the conditions during training and test are
different and that an acoustic representation that is better
in reducing the influence of these perhaps should be
preferred, even if its performance under similar training
and test conditions is lower. Such aspects may till

motivate the use of formants or other representations
closer to the human speech production process. The high
potential for speaker adaptation and normalisation of the
formant representation has not been exploited in this
report but should be considered in future work.
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