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SUMMARY

In this paper several modi�cations of two methods for

parameter reduction of Hidden Markov Models by state

tying are described. The two methods represent a data

driven clustering triphone states with a bottom up algo-

rithm [3, 9], and a top down method growing decision

trees for triphone states [2, 10]. We investigate several

aspects of state tying as the possible reduction of the

word error rate by state tying, the consequences of di�er-

ent distance measures for the data driven approach and

modi�cations of the original decision tree approach such

as node merging. The tests were performed on the test

corpora for the 5 000 word vocabulary of the WSJ Novem-

ber 92 task and on the evaluation corpora for the 3 000

word VERBMOBIL '95 task. The word error rate by

state tying was reduced by 14% for the WSJ task and by

5% for the VERBMOBIL task.

1. INTRODUCTION

Large vocabulary speech recognition systems model the

acoustic realization of the words in the vocabulary with

phoneme models. Due to the fact that the acoustic re-

alization of the phonemes depends heavily on the pho-

netic context, it is essential for e�cient speech recogni-

tion to model this context dependency [6, 8]. The most

commonly used context dependent phoneme model is the

phoneme model in a triphone context, in practice simply

called triphone. Although triphones provide an excellent

modelling of the context dependency, their exclusive use

as acoustic models is prohibitive for vocabulary indepen-

dent speech recognition because the set of triphones in the

recognition vocabulary often contains triphones that can-

not be observed in the training. Another serious problem

is that many triphones occur very seldom in the training

corpus so the estimation of the models may not be reli-

able. A possible solution of this problem is the so-called

state tying . To improve the robustness of the parame-

ter estimation the emission probabilities of the triphone

states are shared between clusters of states which are sim-

ilar according to a distance measure. The training data

assigned to the states of one cluster is used to estimate

the shared emission probability of these states.

In this paper several modi�cations of two well known

methods for parameter reduction of Hidden Markov Mod-

els by state tying are described. The two methods are a

data driven method which clusters triphone states with

a bottom up algorithm [3, 9], and a top down method

which grows decision trees for triphone states [2, 10]. We

investigate the following aspects:

� The possible reduction of the word error rate by state

tying,

� the consequences of di�erent distance measures for

the data driven approach and

� modi�cations of the original decision tree approach

such as node merging.

The tests were performed on the test corpora for the 5 000

word vocabulary of the WSJ November 92 task and on

the evaluation corpus for the 3 000 word vocabulary of

the VERBMOBIL '95 task. The reduction of the word

error rate by state tying is about 14% for the WSJ task

and 5% for the VERBMOBIL task compared to simple

triphone models.

2. STATE TYING

The aim of state tying is to reduce the number of pa-

rameters of the speech recognition system without a sig-

ni�cant degradation in modelling accuracy. The states of

the triphones used in training which are similar according

to a distance measure are tied together. First, a suitable

triphone list is assembled with respect to the training cor-

pus. Because this list has to be quite large to achieve an

accurate modelling of the acoustic context, simple mod-

els are used for the emission probabilities (one Gaussian

density with diagonal or full covariance matrix). Using a

segmentation of the training data the mean �̂X and the

variance �̂2X of the triphone states X are estimated. The

triphone states are then subdivided into subsets accord-

ing to their central phoneme and their position within

the phoneme model. Inside these sets the states are tied

together according to a distance measure. Additionally it

has to be assured that every model contains a su�cient

amount of training data. The resulting models are then

reestimated.

In this work we investigate two methods for state tying.

One data driven method, which clusters triphone states

with a bottom up approach, and a method which grows

decision trees using a top down algorithm.

3. DATA DRIVEN METHOD

The data driven method [3] works in two steps. In the

�rst step the triphone states being very much alike due to

a distance measure are clustered together. In the second

step the states which do not contain enough data are

clustered together with the nearest neighbour. Then the

resulting states are tied and �nally reestimated with a

higher acoustic resolution.

The main drawback of the data driven method is that

for triphones which were not observed in the training



Table 1. Word error rates [%] on WSJ0, Nov.'92, 18 speakers, 12232 spoken words

Tying Tying Variant Triphones Mixtures Densities Search Space DEL-INS WER[%]

(# States) [%]

no tying { 780 2338 246 000 { { 8.8

appr. divergence 1856 2030 150 000 19 000 1.3-1.0 8.6
data driven

log-likelihood 1856 2005 168 000 16 000 1.2-1.0 8.1

one observation (baseline) 7834 2001 192 000 6 000 1.2-0.9 7.6

50 observations 1833 2001 196 000 6 000 1.2-1.0 8.3

20 observations 3025 2001 194 000 6 000 1.3-0.9 7.9

intersection 5220 2001 194 000 7 000 1.2-0.9 7.8

cross validation 1833 2001 194 000 6 000 1.3-0.9 7.9

one tree 7834 2001 192 000 6 000 1.3-0.9 7.8

merge-to-combine 7834 2001 200 000 6 000 1.3-0.9 7.8

merge-to-reduce 7834 1714 176 000 6 000 1.3-0.9 8.0

CART merge-to-reduce 7834 1412 154 000 7 000 1.4-0.8 8.0

merge-to-reduce 7834 1130 130 000 7 000 1.5-0.8 8.3

merge-to-reduce 7834 880 102 000 9 000 1.5-0.7 8.4

GD coupling 1854 2001 198 000 6 000 1.1-1.0 8.0

GD coupling 5857 2001 210 000 6 000 1.3-0.9 8.1

smoothed GD coupling 7834 2001 195 000 6 000 1.2-0.8 7.7

full covariance 3025 2001 196 000 6 000 1.2-1.1 8.0

smoothed full covariance 3025 2001 212 000 6 000 1.2-0.9 7.9

smoothed full covariance 7834 2001 199 000 6 000 1.2-0.8 7.7

Table 2. Word error rates [%] on VERBMOBIL '95

corpus spoken words CART Triphones Mixtures Densities Search Space DEL-INS WER[%]

(# States) [%]

short95 3821 no 707 2122 136 000 10 000 7.7-4.4 34.0

yes 4712 1501 119 000 11 000 6.3-5.2 32.2

long95 3383 no 707 2122 136 000 16 000 5.9-9.0 39.6

yes 4712 1501 119 000 10 000 5.8-9.8 37.5

corpus no tied model is available. Thus these unseen

triphones are modeled by so-called backing o� models.

Usually these models are simple generalizations of the

triphones such as diphones or monophones. The train-

ing of the backing o� models is performed on the data of

the triphones which were not involved in the clustering

process. In our tests we have used the triphones which

were seen more than 50 times in the training corpus for

clustering, and the complementary set for the training of

the monophone backing o� models.

For the data driven method we tested the following

criteria: the approximative divergence [9] of two states

and the log-likelihood di�erence between using only one

model or two models for the observations of two clusters.

4. DECISION TREE METHOD

Decision trees are binary trees whose internal nodes are

tagged with questions about the data which has to be

classi�ed, while the leaves are tagged with class labels.

For our purposes we use phonetic questions as \Is the

right context a vowel?" and tag the leaves of the tree

with mixture labels. To �nd the appropriate models for

a triphone state, one starts at the root of the appropriate

tree, ask the questions on the triphone state and, accord-

ing to the answer, branch to the left (yes) or to the right

(no) until he reaches a leaf. The mixture label at the leaf

identi�es the mixture model for the triphone state.

The algorithm for tree construction starts with one

single node for all the triphone states which have the

same central phoneme and the same position within the

L-BOUNDARY

R-LIQUID L-BACK-R

1/10477 R-LAX-VOWEL L-R L-L-NASAL

3/2370 R-TENSE-VOWEL

2/3628 1/9337

2/892 L-LAX-VOWEL 4/2692 R-UR

1/2098 3/3197 1/526 R-S/SH

1/848 L-EE

1/635 8/3179

Figure 1. Decision tree for phoneme th (state 1).

phoneme model. The observations within every node are

modelled with one Gaussian density with diagonal or full

covariance matrix. Then the leaves of the tree are con-

secutively split with the questions which gives the largest

local improvement in likelihood. If the improvement falls

below a threshold for every possible split of every node,

the algorithm stops.

One advantage of the decision tree method compared

to the data driven method is that no backing o� mod-

els are needed because using the decision trees one can

�nd a generalized model for every triphone state in the

recognition vocabulary.

Fig. 1 shows a decision tree for phoneme th (state 1).

The inner nodes are labelled with the proper question,

e.g. L-BOUNDARY means \Is the left context a word



boundary?". The leaves of the tree are labelled with the

number of triphone states and the number of observations

which belong to this leaf. One interesting observation is

that this tree (and most other trees, too) has a bias to its

right. This e�ect comes from the fact that most questions

ask for a very special phoneme property. The consequence

is that for these questions most triphone states belong to

the right subtree. Another observation is that the right-

most leaf contains a lot of triphone states compared to

the other leaves. This is because this node contains tri-

phone states for which all the questions from the root to

the leaf were answered by \no". So this triphone set is

very heterogenous and new triphones which were mapped

onto this state may be modelled not as good as by the

other states of the tree.

We also tested the following modi�cations of the origi-

nal method: A single tree instead of one distinct tree for

every phoneme and state, di�erent triphone lists, a simple

cross validation scheme, two distinct models for male and

female speakers in every tree node, an additional merging

of nodes after the spitting process, and full covariance ma-

trices instead of variance vectors for the Gaussian models

in the nodes.

4.1. NO AD-HOC SUBDIVISION

In this method, the subdivision of the states according

to their central phoneme and their position within the

phoneme model is not used. Instead the algorithm starts

with one single root node. The leaves are then splitted by

asking questions not only on the context of the triphone

state but also on the central phoneme and the position.

The problem with this modi�cation is the following: due

to the possibility some leaves contain triphone states with

di�erent central phonemes, some words in the vocabulary

cannot be discriminated any more. There are di�erent so-

lutions to this problem: split every node until it contains

only states with one central phoneme or split every node

until every word in the vocabulary can be discriminated.

In the experiments, we found out that such \heteroge-

nous" nodes are very rare and do not introduce any am-

biguities in the lexicon. So we did not use any of the

countermeasures listed above.

4.2. DIFFERENT TRIPHONE LISTS

In order to verify the e�ect of the triphone lists used

for the decision tree construction we tested four di�er-

ent triphone lists (see table 1). One list containing all

triphones from the WSJ November '92 training corpus

(table 1, variant 'one observation'), two lists containing

the triphones from list 'one observation' which were seen

more than 20 or 50 times in the training corpus (table 1,

variant '20 observations, 50 observations'), and a fourth

list containing those triphones from the training corpus

which can also be found in the test lexicon (table 1, vari-

ant 'intersection').

4.3. CROSS VALIDATION

The use of cross validation for splitting the nodes was

also tested. For cross validation the full triphone list was

splitted into the triphones wich were seen more than 50

times in the training text (triphone list 1) and the com-

plementary set (triphone list 2). Triphone list 1 was used

to estimate the Gaussian models of the tree nodes while

triphone list 2 was used to cross validate the splits. At ev-

ery node the split with the highest gain in log-likelihood

was made which also achieved a positive gain for the tri-

phones of list 2.

4.4. GENDER DEPENDENT COUPLING

Because the training corpus contains two very di�erent

groups of speakers, namely male and female speakers, it

could be advantageous to construct gender dependent de-

cision trees. This approach has the disadvantage that the

training data for the tree construction is being halved.

Therefore we used the gender dependent (GD) method

described in [7]. Every tree node contains two separate

models for male and female data. The log-likelihood of

the node data can then be calculated as the sum of the

log-likelihoods of the two models.

4.5. NODE MERGING

The baseline algorithm uses only simple questions such

as \Has the context X the property Y ?" thus the leaves

of the tree contain those triphone states for which the

conjunction of the answers to the questions from the root

to this leaf are true. To allow the construction of disjunc-

tions, we implemented an additional merging of nodes.

This merging is performed after the tree growing. The

distances of all the leaves are calculated and then the two

leaves with the smallest distance are merged. The merged

node represents the triphone states for which the disjunc-

tion of the conjuncted answers are true. So every possible

combination of questions can be constructed.

In our experiments we used two approaches. In the

�rst approach we splitted the decision tree nodes to

3000 leaves and then merged these leaves to 2000 mod-

els (merge-to-combine). In the second approach we used

the tree with 2000 leaves and then merged a signi�cant

number of leaves to reduce the number of models in the

resulting recognizer(merge-to-reduce).

4.6. FULL COVARIANCE MATRIX

To increase the accuracy of the acoustic modelling of the

training data, we replaced the diagonal covariance matri-

ces of the Gaussian models by full covariance matrices.

This modi�cation results in a large increase in the num-

ber of parameters of the decision tree (here: factor of 18).

So we implemented a smoothing method which interpo-

lates the covariance matrix �X at a certain node X with

the covariance matrix of the parent node ~X resulting in

an interpolated covariance matrix �̂X :

�̂X = ��X + (1� �)� ~X

The interpolation factor � is calculated by a sigmoid

function:

� =
1

1 + exp(�5(Nx=� � 1))

where Nx is the number of observations at node X

and � is the \smoothness" parameter of the sigmoid func-

tion. For very small Nx it yields a � which is approxi-

mately zero, and the number of observations where � is

1=2 equals �. For the experiments we used a � of 500.

5. RESULTS

The system which was used to obtain the results is de-

scribed in [1, 3]. The most important properties are:

� 30 �lter bank outputs together with �rst and second

order derivatives resulting in a 63-component acous-

tic vector,



� feature reduction down to 35 components by LDA

[4],

� continuous HMM with Laplacian mixture densities,

� one single vector of absolute deviations for all distri-

butions,

� Viterbi approximation for training,

� word conditioned search algorithm using a lexical

pre�x tree in combination with a bigram language

model for recognition.

For Wall Street Journal the training was done on

the WSJ0 training corpus and the tests were performed

on the WSJ November 92 test set. For VERBMOBIL

we used the VERBMOBIL '95 training corpus and the

VERBMOBIL '95 test corpus for testing.

Table 1 shows the results for state tying on the WSJ

5 000 word test corpus. State tying with the bottom up

method and the log-likelihood measure improves the word

error rate (WER) from 8.8% to 8.1% for the log-likelihood

measure and to 8.6% for the approximative divergence

measure compared to the untied models.

The best result for state tying with decision trees

achieved an additional relative improvement of 6% over

the bottom up method. This result was obtained by

using all triphones for tree construction ('one observa-

tion'). Triphone subsets ('50 observations', '20 obser-

vations', 'intersection') for tree construction performed

slightly worse. The conclusion is that it is advantageous

to use as many triphone states as possible to select the

questions at the tree nodes.

The simple cross validation method we have tested re-

duced the error rate for the triphone list 50 observations

from 8.4% to 7.9%. This result shows the potential im-

provement that can be achieved by cross validation. The

problem with this simple method seems to be the small

number of triphone states used for the selection of the

questions.

Using only one tree with additional questions on the

central phoneme and the state did not improve the error

rate. The advantage of this method is its higher 
exi-

bility. Since the minimum number of models is equal to

1, trees of any size can be constructed. These trees can

then be used in various methods such as state tying (as

described here) or speaker adaptation.

The merge-to-combine method leads to approximately

the same error rate as the baseline method. The merge-

to-reduce tests show that the number of mixtures can be

halved by merging while the error rate increases only by

10% relative.

The plain coupling of two gender dependent models in

the tree nodes increases the error rate to approximately

8.0%. By an additional smoothing of the variance vectors

the results of the baseline method can also be achieved.

For the tests with a full covariance matrix we �rst used

the triphone list 20 observations, which results in an er-

ror rate of 8.0%. Additional smoothing and the full tri-

phone list reduced this error rate to 7.7%. Compared to

the baseline method which employs a variance vector per

model, this more accurate method did not improve the

recognition results. We think that the reason is the LDA

transformation of the feature vector. Because an LDA

transformation roughly decorrelates the class dependent

covariance matrix, the usage of a variance vector as an

approximation for the covariance matrix seems to work

quite well.

Table 2 shows the results for decision tree based state

tying on the VERBMOBIL corpus. The corpus is subdi-

vided into the short95 corpus (short sentences) and the

long95 corpus (long sentences). Here the gain due to state

tying is lower than on the WSJ task. One possible reason

is that the context dependency of phones in the German

language is not as high as in the English language. A

second possible reason is that the VERBMOBIL corpus

contains spontaneous speech while the WSJ corpus con-

tains read speech. Thus we think that by adding across

word models to our recognizer, the overall improvement

will be comparable for both corpora.

REFERENCES

[1] X. Aubert, C. Dugast, H. Ney, V. Steinbiss, \Large

Vocabulary, Continuous Speech Recognition of Wall

Street Journal Corpus," Proc. IEEE Int. Conf. on

Acoustics, Speech and Signal Processing , Adelaide,

Australia, Vol. II, pp. 129-132, April 1994.

[2] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone,

Classi�cation and Regression Trees, The Wadsworth

Statistics/Probability Series, Belmont, CA, 1984.

[3] C. Dugast, R. Kneser, X. Aubert, S. Ortmanns,

K. Beulen, H. Ney, \Continuous Speech Recogni-

tion Tests and Results for the NAB'94 Corpus,"

Proc. ARPA Spoken Language Technology Work-

shop, Austin, TX, pp. 156-161, January 1995.

[4] R. Haeb-Umbach, H. Ney, \Linear Discriminant

Analysis for Improved Large Vocabulary Continuous

Speech Recognition," Proc. Int. Conf. on Acoustics,

Speech and Signal Processing , San Francisco, CA,

pp. 13-16, March 1992.

[5] H.-W. Hon, Vocabulary-Independent Speech Recogni-

tion: The VOCIND System, Ph.D. Thesis, School

of Computer Science, Carnegie Mellon University,

Pittsburg, PA, 1992.

[6] H. Ney, \Acoustic Modelling of Phoneme Units for

Continuous Speech Recognition," Proc. Fifth Eu-

rop. Signal Processing Conf., Barcelona, pp. 65-72,

September 1990.

[7] J. J. Odell, The Use of Context in Large Vocabulary

Speech Recognition, Ph.D. Thesis, Cambridge Uni-

versity, Cambridge, March 1995.

[8] R. Schwartz, Y. Chow, O. Kimball, S. Roucos, U.

Krasner, J. Makhoul, \Context-Dependent Mod-

elling for Acoustic-Phonetic Recognition of Contin-

uous Speech," Proc. IEEE Int. Conf. on Acoustics,

Speech and Signal Processing , Tampa, FL, pp. 1205-

1208, March/April 1985.

[9] S.J. Young, P.C. Woodland, \The Use of State Ty-

ing in Continuous Speech Recognition," Proc. Eu-

rop. Conf. on Speech Communication and Technol-

ogy , Berlin, pp. 2203-2206, September 1993.

[10] S.J. Young, J.J. Odell, P.C. Woodland, \Tree-Based

State Tying for High Accuracy Acoustic Modelling,"

Proc. ARPA Human Language Technology Work-

shop, Plainsboro, NJ, pp. 405-410, Morgan Kauf-

mann, March 1994.


