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ABSTRACT

The performance of the Philips system for large vocab-
ulary continuous speech recognition has been improved
signi�cantly by crossword N-phone modelling, enhanced
clustering of HMM-states during training, consistent han-
dling of untrained HMM-states during decoding and a new
e�cient crossword N-phone M-gram decoding strategy.
We report word error rate reductions of up to 18% on var-
ious ARPA test sets as compared to our best within-word
triphone system, based on Laplacian densities, Viterbi de-
coding and �lterbank-LDA features. The following two
issues are addressed:

� Transformation of a tree-organized bigram beam-
search decoder into an e�cient tree-organized de-
coder capable of handling long-span acoustic con-
texts as well as long-span language model contexts.

� State-clustering and generalizing of unseen contexts
for the case of Laplacian emission probability density
functions.

1 INTRODUCTION

When working on a large vocabulary continuous speech
recognition task, proper modelling of frequent word se-
quences and coarticulation e�ects is crucial. This calls
for integration of long-span context modelling at two lev-
els. At the word level we employ M-gram language mod-
els (with M > 2). At the phone level accurate long-span
acoustic models are constructed by training crossword and
within-word context dependent phones. Crossword mod-
els cause the number of parameters that have to be esti-
mated during training to become prohibitively large. On
top of this there will always be too little data to robustly
estimate models for some of the very rare context de-
pendent phones. Thus clustering has to be applied. We
investigated two approaches both having the additional
advantage of providing an easy way of modelling unseen
context dependent phones during recognition. As the han-
dling of crossword context dependent phones during de-
coding requires the anticipation of all possible successor
phones, the resulting complexity poses a severe problem
where computing resources are concerned. Our decoding
strategy takes care of this problem.

2 CROSSWORD N-PHONE M-GRAM

DECODER

2.1 Score Propagation

The decoder is an extension of the one-pass beam search

algorithm [1] and is able to handle a M-gram language
model history together with N-phone crossword models.
In the literature crossword N-phone M-gram decoders
have already been described in a somewhat informal way
[5]. We present a formal framework for such a decoder
based on the approach described in [1] .
For a one-pass bigram Viterbi-decoder using a word con-
ditioned lexical tree search the following recursive equa-
tions describe the time-synchronous propagation of scores
through the search space:
Let Qv(t; s;w) denote the score (log-likelihood value) of
the best Viterbi-path reaching state s of the HMM for
word w at time t given the predecessor word v. Then

Qv(t; s;w) = max
s0

fQv(t� 1; s0; w) + log p(xt; sjs
0
; w)g;

where p(xt; sjs
0; w) consists of the likelihood of the obser-

vation xt given state s at time t and the probability for
the transition from state s0 to state s. The initial value
Qv(t; 0; w) for the recursion is

Qv(t; 0; w) = max
v0

fQv0 (t� 1; SE(v); v) + log p(vjv0)g;

where SE(v) is the last state of the predecessor word
v and word v0 in turn is predecessor of word v. The
best hypothesis can be identi�ed after adding the lan-
guage model score log p(vjv0). The language model score
cannot be considered any earlier due to the tree orga-
nization of the pronunciation lexicon, unless a language

model look-ahead is applied. For the case of a bigram lan-
guage model, using above equations guarantees that opti-
mal alignments will be found. Now substituting the lan-
guage model history V M�1

1
= [v1; :::; vM�1] for the word

identity v in Qv(t; s;w) we immediately obtain the respec-
tive score propagation equations for a M-gram language
model. Thus by modifying the predecessor word iden-
tity in the above equations we can formally construct a
M-gram decoder:

Q[v1;:::;vM�1 ]
(t; s;w) =

max
s0

fQ[v1;:::;vM�1 ]
(t� 1; s0; w) + log p(xt; sjs

0
; w)g



Q[v1;:::;vM�1 ]
(t;0; w) =

max
[v0;v1;:::;vM�2 ]

fQ[v0;v1;:::;vM�2 ]
(t� 1; SE(vM�1); vM�1)

+ log p(vM�1j[v
0
; v1; :::; vM�2])g:

Accurate decoding based on crossword context dependent
phone models requires the left and right phonetic contexts
of the word w to be taken into account.
The left phonetic context is integrated into above equa-
tions by supplementing the language model history with
additional pause words. In order to indicate a non-
coarticulated transition a pause word is inserted in be-
tween the respective words. Two consecutive non-pause
words now de�ne a crossword transition. Since the pre-
decessor word sequence can contain pause words, it may
obviously be longer than the original language model his-
tory.
In order to incorporate the right phonetic context into
the term Q we have to consider all possible sequences of
successor phones UK

1 = [u1; :::; uK].
Let QV L

1
;UK

1

(t; s;w) be the score of the best Viterbi-path,

reaching state s of the HMM for word w with the right
context (phone sequence)UK

1 = [u1; :::; uK ] at time t given
the left (acoustic and language) context (word sequence)
V L
1 = [v1; :::; vL]. Note that the scope of the phonetic

context may exceed the scope of the language model con-
text and vice versa. Thus the length L of the left context
and the length K of the right context have to be chosen
as short as possible while at the same time accommodat-
ing the crossword N-phone M-gram constraint. For this
purpose we use a context matching function m(AjB). It
equals one if the contexts A and B match (overlap) both,
phonetically and with respect to the language model.
Otherwise it equals zero. The equations of the score prop-
agation can now be written as:

QV L
1

;UK
1

(t; s;w) =

max
s0

fQV L
1
;UK

1

(t� 1; s0; w) + log p(xt; sjs
0
; w; V

L
1 ; U

K
1 )g

QV L
1
;UK

1

(t; 0; w) =

max
V 0L

0

1
;v
L
;U 0K

0

1

m(V L
1 ; w;U

K
1 jV 0L

0

1 ; vL; U
0K

0

1 )� (1)

fQ
V 0L

0

1
;U 0K

0

1

(t� 1; SE(vL); vL) + log p(vLjV
0L

0

1 )g:

Note that the term p(xt; sjs
0; w;V L

1 ; U
K
1 ) includes the en-

tire phonetic context w;V L
1 ; U

K
1 . The term p(vLjV

0L
0

1 )
implies the application of a language model containing
pause words. Thus equation (1) suggests to model a pri-
ori probabilities for pause transitions. This may be rather
important for the decoding of spontaneous and strongly
coarticulated speech. Deleting the pause words from the

history V 0L
0

1 and using a zero-gram language model prob-
ability for the pause word itself is consistent with the con-
ventional language modelling approach.
Starting from equation (1) a tree-organized crossword N-
phone M-gram decoder is constructed.

2.2 Reducing Complexity

The decoder is realized with help of an e�cient tree-copy
scheme. A tree copy for each occuring acoustic/language-
model context fV L

1 ;UK
1 g is required to guarantee opti-

mality during recombination of the search hypotheses (see
equation (1)). Thus the number of hypotheses will grow
exponentially with time t. Language-model look-ahead [9]
and histogram pruning are used to decrease the number
of hypotheses. In order to limit the number of tree copies
we constrain the number of wordend hypotheses per time
instance t.

2.3 Killer Heuristics

We employ a strategy from game-searching theory known
as killer heuristics to further reduce the search space. The
optimal state hypothesis s�(t) at time instance t is likely
to be found in the vicinity of the optimal state hypothesis
s�(t� 1). Thus computing the optimal score of the states
s in the neighborhood N (s�(t� 1)) gives an estimate of
the overall optimal score at time t:

Q̂
�(t) = max

s2N (s�(t�1))

Q(s; t):

In the original one-pass beam-search paradigm, pruning
is applied after the computation of the optimal score of
all active hypotheses at time t. Now, using the estimate
Q̂�(t) of the optimal score, pruning is interwoven with
the score propagation at time instance t. The method de-
scribed reduces the number of state hypotheses and even
the computation time by 20% without loss of optimal-
ity. A similar strategy is employed in the RWTH-Aachen
system [2].

2.4 Wordgraph Constrained Decoding

Operating the decoder in a wordgraph-constrained mode
reduces the set of possible hypotheses by orders of magni-
tude without signi�cant loss of accuracy as compared to
the one-pass mode. A lattice is obtained in a preprocess-
ing step with acoustic and language models of low com-
plexity [1]. In [1] bigram-constrained wordgraphs were
suggested for the evaluation of more complex acoustic
and language models. Using M-gram N-phone crossword
models this may lead to a suboptimal decoder. Instead
of applying this constraint, here a N-best algorithm [10]
is applied to thin out the lattice. From this lattice a
compact wordgraph is derived by discarding scores, time
information and even the predecessor information. This
wordgraph is transformed into a �nite state network to
constrain the set of allowed word sequences. Now dynam-
ically creating tree copies for accurate crossword N-phone
M-gram decoding (eq. (1)) is tractable.

2.5 Fast Likelihood Computation

As decoding still has to deal with a large number of hy-
potheses, the application of fast but approximative like-
lihood computation techniques ([11],[12]) is of advantage.
However the impact of such approximations cannot be
forseen when evaluating highly accurate acoustic models.



Yet they can be used in the �rst pass, if a wordgraph
constrained decoding with an accurate likelihood compu-
tation will follow the generation of the lattice.

3 TRAINING CONTEXT

DEPENDENT PHONES

After estimation of context independent phone models an
automatic selection of pronunciation variants takes place.
Thus a crossword N-phone script is derived and stan-
dard HMM training is performed, yielding a single density
for each state. We investigate two di�erent methods for
clustering state models, a top-down and a bottom-up ap-
proach. Either approach is capable of handling long-span
acoustic contexts.
One of the approaches is the recently proposed general-

ized bottom-up state-clustering strategy [8]. In a �rst pass
bottom-up state clustering is carried out. In a second pass
the state clusters derived are used to estimate similarities
between di�erent contexts. When a state model for an
unseen context dependent phone is needed during decod-
ing the state model of the most similar context dependent
phone seen during training is substituted for it.
The top-down approach uses decision-tree based cluster-
ing and generalization to estimate continuous Laplacian

mixture emission probability densities. In other systems
the acoustic modelling is typically associated with Gaus-
sian mixture densities ([3],[4],[6],[7]). Bahl et al.[3] for
instance, presented a goodness-of-split criterion for Gaus-
sian densities which aims directly at maximizing the log-
likelihood of the training data. Following their work we
derived an analogous goodness-of-split criterion G for a
decision-tree based clustering of HMM states with Lapla-
cian densities.
We consider the training samples of each state of a mono-
phone HMM as constituting a class. The parameters of a
Laplacian density function are estimated from these sam-
ples. Regarding this class as the root node of a decision
tree, we subsequently split the leaves of the tree by asking
binary questions about the phonetic context of the respec-
tive samples. We used the set of questions proposed by
Odell [5].
The likelihood of the set of samples Y modelled by the
decision tree with leaves � = 1; : : : ;� can be written as

P(Y ) = ��

�=1�y2Y
�
P�(y);

where P� is the Laplacian density modelling the set of
samples Y� associated with leaf �.
Obviously, Y =

S
�

�=1
Y� and Ym \ Yn = ; if m 6= n.

When splitting a node n into two successor nodes l and r
the change of the overall log-likelihood can be determined
locally. The gain G(q; n) when applying question q at
node n is given by

G(q; n) = log ((Pl(Yl)Pr(Yr))=Pn(Yn)) :

We model P� using D-dimensional Laplacians with diag-
onal covariance matrices

P�(y) = �D
d=1

1

2b�;d
exp

�
�
jyd � ��;dj

b�;d

�
:

The maximum likelihood estimates �̂�;d and b̂�;d are
found to be the median ~��;d and its average distance

�P
y2Y

�

jyd � ~��;dj
�
=N� from the N� observations.

Resubstitution of these estimates into the above equations
yields:

G(q; n) =

DX
d=1

�
Nn log

P
y2Yn

jyd � ~�n;dj

Nn

�

�
Nl log

P
y2Y

l

jyd � ~�l;dj

Nl

+Nr log

P
y2Yr

jyd � ~�r;dj

Nr

��
;

where Nn, Nl and Nr are the number of samples assigned
to the parent node n and its successor nodes l and r. For
Gaussian densities it is not necessary to compute models
directly from the samples of the state clusters as all of
the information required is included in the statistics of
the associated states. This does not hold for Laplacians.
Yet, experiments showed that without loss of recognition
accuracy a simpler criterion G� for splitting a node n into
two nodes l and r can be applied:

G
�(q; n) =

DX
d=1

"X
p2Pn

Npj�yp;d � �yn;dj

�

 X
p2P

l

Npj�yp;d � �yl;dj+
X
p2Pr

Npj�yp;d � �yr;d j

!#
;

where Pn, Pl and Pr are the sets of states represented by
the nodes n, l and r; Np is the number of samples belong-
ing to state p; �yp denotes the mean of these samples; �yn,
�yl and �yr are the means associated with nodes n, l and r.
After completion of the clustering process a continuous
Laplacian mixture density is estimated for each cluster.

4 RESULTS

We compared our best within-word triphone system (ww-
gbut) with the new crossword-triphone system, cluster-
ing states with either the generalized state-clustering ap-
proach (cw-gbut) or the decision-tree approach (cw-dtree).
Results were determined for various ARPA test sets with
vocabularies of 5000 and 64000 words. The training of
the triphone models was carried out gender dependently
on the WSJ0 and the WSJ0+1 corpus. Averaged over all
test sets we obtained a relative improvement of 10 %. For
the male part of the si et h2 set we observed a relative
improvement of 18 % (see table 1).
On the NAB'94 task the decision tree approach led to
a degradation in performance for the within-word setup.
When switching from within-word to crossword models
we observed that the decision tree approach clearly out-
performed the bottom-up clustering method described in
[8] (see table 1, table 2). Thus the inclusion of phonetic
knowledge into the recognition system is of advantage
when dealing with a large number of crossword context
dependent phones as its generalization capabilty is supe-
rior to that of the bottom-up approach. When apply-
ing decision-trees to pentaphones, we found no signi�cant
improvement in the error rate on the WSJ0 setup. This
came as no surprise as the amount of training data in this



setup is insu�cient for a robust estimation of pentaphone
models. Moreover we observed that pentaphone-speci�c
questions had little impact on decision tree construction.
In addition to long-span acoustic models, long-span lan-
guage models, trained on 38 million words of the WSJ
corpus, were integrated. The use of a trigram instead
of a bigram language model pays o� (see table 3), going
one step further still yields a small decrease in word error
rate. Saturation for the 5000 word task is observed when
switching to a pentagram language model.

Table 1: Word error rates (in %) for within-word (ww)
and crossword (cw) models using generalized bottom-
up tying (gbut) or decision trees (dtree) for a vocabu-
lary of 5000 words (ARPA sets: si dt 05'92, si et 05'92,
si dt 05'93, si et h2'93) bigram language model, WSJ0
training

ww-gbut cw-gbut cw-dtree

male si dt 05 92 9.1 8.7 8.3
male si et 05 92 5.4 5.9 5.0
male si dt 05 93 11.7 10.5 10.6

male si et h2 93 13.5 12.2 11.0

males 92/93 9.9 9.3 8.8 (-11%)

female si dt 05 92 7.0 6.9 6.3
female si et 05 92 7.1 6.9 6.3

female si dt 05 93 10.5 9.7 10.1
female si et h2 93 7.6 8.0 7.0

females 92/93 8.4 8.1 7.6 (-10%)

all 92/93 9.2 8.7 8.2 (-11%)

Table 2: Word error rates (in %) for within-word (ww)
and crossword (cw) models using generalized bottom-up
tying (gbut) or decision trees (dtree) for a vocabulary of
64000 words (male part of evaluation set NAB'94) with
bigram and trigram language models, WSJ0+1 training

ww-gbut cw-gbut cw-dtree

bigram 13.2 (0%) 12.9 (-2%) 11.9 (-11%)

trigram 10.4 (-21%) 10.0 (-24%) 9.6 (-27%)

5 CONCLUSION

We presented an e�cient method for handling long-span
acoustic and long-span language models in our decoder.
We found that the use of such long-span models mer-
its the additional e�ort in a large vocabulary continuous
speech recognition system, as we were able to decrease
the word error rates by up to 27% on various ARPA
test sets. When modelling crossword context dependent
phones the decision-tree approach performed better than
the generalized bottom-up tying approach. It is interest-
ing to note that our system as opposed to other systems
([3],[4],[6],[7]), uses �lterbank-LDA features, Laplacian in-
stead of Gaussian densities and a Viterbi alignment in-
stead of Baum-Welsh training. Nevertheless, proper han-
dling of acoustic contexts and language model contexts
leads to a comparable improvement of our system.

Table 3: Word error rates (in %) for a vocabulary of 5000
words (ARPA sets: si dt 05'92, si et 05'92, si dt 05'93,
si et h2'93) using various N-gram language models, deci-
sion tree clustering, WSJ0 training

females 92/93 males 92/93

ww-bigram 8.4 10.0

ww-trigram 6.8 (-19%) 8.0 (-20%)
ww-tetragram 6.5 (-23%) 8.0 (-20%)
ww-pentagram 6.5 (-23%) 8.0 (-20%)

cw-bigram 7.6 (-10%) 8.8 (-12%)
cw-trigram 6.4 (-24%) 7.5 (-25%)

cw-tetragram 6.1 (-27%) 7.3 (-27%)
cw-pentagram 6.1 (-27%) 7.3 (-27%)
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