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ABSTRACT

A major challenge in speech recognition based on
acoustic subword units is creating a lexicon which is
robust to inter- and intra-speaker variations. In this
paper we present two different approaches for incor-
porating simple word-level linguistic knowledge into
the labelling step of the training procedure. The pro-
posed systems also utilise a scheme for combined op-
timisation of baseforms and subword models. For the
TI46 database, these methods are shown to greatly
improve the performance compared to an acoustic
subword based speech recogniser employing unsuper-
vised labelling, and they are found to perform as well
as systems utilising whole-word models and context
independent phoneme models.

1. INTRODUCTION

Traditionally, automatic speech recognisers employ
phone-like units based upon a linguistic description
of the language. On the other hand, the analysis of
the actual speech signal is acoustically based. The re-
sulting system is neither phonetically nor acoustically
consistent, but is instead a hybrid of two methodolo-
gies. In an attempt to create a consistent acoustic
framework, there have been several attempts to utilise
acoustically based subword units (ASWUs) over the
last ten years (see e.g., [1, 2, 3]).

One major challenge with this kind of basic units
1s the lack of a pronunciation lexicon. The lexicon
should contain one or several baseforms for each word
in the vocabulary. Each baseform defines the compo-
sition of a word in terms of the basic units. As the
ASWUs do not necessarily have a one-to-one corre-
spondence to any linguistic units, the baseforms must
be found by some training procedure, e.g., such as
proposed in [4, 5].

This work concentrates on speaker independent
recognition. Most algorithms for ASWU based speech
recognisers are developed and tested for speaker de-
pendent recognition, which reduces the problem of
inter-speaker variations. Since the ASWUs are auto-

matically defined, based on the acoustic manifesta-
tions in the training material, an acoustic segmenta-
tion and a subsequent labelling of the resulting seg-
ments are required. The labelling will generally be
sensitive to inter- and intra-speaker variations, and
has been the weak link when applying ASWUs to
speaker independent recognition. In this paper, we
propose two different approaches for labelling of acous-
tically segmented speech. The two procedures incor-
porate simple word-level linguistic knowledge in the
training phase by restricting the labelling of different
utterances of the same word to be similar or 1dentical.

2. BASIC TRAINING SCHEME

The basic training scheme closely resembles that pro-
posed in [2]. The major differences lie in the labelling
schemes, and in how the baseforms are generated.
The training of the proposed system can be sum-
marised as follows:

1) Initial segmentation of speech utterances into acous-
tically stationary segments is performed by Constrained
Clustering Segmentation [6]. Choosing Euclidean dis-
tance as the distortion measure, this problem can be
formulated as finding the set of segment boundaries

{bo, b1, ...,bs} that minimises the total distortion
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where X; is the centroid of the j'th segment consisting
of the feature vectors {xs,, ..., Xp;,,~1}.

2) Representing each of the acoustic segments by its
centroid, the LBG-algorithm [7] is employed to clus-
ter the segments into S clusters, and to create a cor-
responding codebook of S codewords. S 1s the prede-
fined number of subword units used in our system.

3) Labelling of the acoustic segments into subword
classes on basis of the codebook from step 2 is done
by one of the two labelling procedures. The purpose
is to incorporate some word-level linguistic knowl-
edge, and thereby increase the robustness to inter-



and intra-speaker variations. The methods are fur-
ther described in section 3.

4) Each partition of the feature space resulting from
the clustering, represents an ASWU. For each sub-
word a Hidden Markov Model (HMM) is trained from
the acoustic segments in the corresponding cluster.

5) The baseforms, in terms of the ASWUs, are gener-
ated. The baseform optimisation method is based on
a Maximum Likelihood (ML) formulation [5] and re-
lies on the Modified Tree-Trellis algorithm [4]. This
step should include a combined optimisation of the
HMMs and the baseforms as described in [8].

3. LABELLING OF ACOUSTICALLY
SEGMENTED SPEECH

In previous work, the labelling in terms of subword
units has been completely unsupervised, based upon
the results of the clustering performed in step 2 of the
training procedure. In this case, the label assigned
to segment j corresponds to the label of the code-
word which minimises the distance over the frames in
the segment, {xp,,...,%p,,,—1}. Using the minimum
squared error criterion, the optimal label i’ is found
according to:
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where C' is the codebook, ¢; is the codebook vector
corresponding to index ¢, and Z is the set of indices
in the codebook, T ={0,1,...,5 — 1}.

Inter- and intra-speaker acoustic variability may
cause this procedure to yield very different label strings
for different utterances of the same word. Because
of this, a single representative lexical description of
each word is difficult to find, and investigations have
shown that the ML based baseform optimisation (step
5) does not perform well under these circumstances.

In sections 3.1 and 3.2, we propose two different
labelling procedures that utilise knowledge of which
words that constitute a training utterance.

3.1. Centroid-alignment-constrained labelling

This scheme aims to assign simelarlabel-sequences to
all utterances found of the same word in the training
data. The algorithm can be divided into a centroid-
alignment procedure (step 1-3 below) followed by a
constrained labelling (step 4 below). The centroid-
alignment procedure ties segments from different ut-
terances of the same word to each other by use of
Dynamic-Time-Warping (DTW). Each utterance is
represented as a sequence of centroids, one per acous-
tic segment. The DTW algorithm performs align-
ment of two sequences by searching for the optimal
path through a grid of nodes. Each node represents

a pair of centroid vectors. The cost associated with a
node (py, ) is given by

dn(pr, @) = ||>_<1(,f) - iéf)llz, (3)
(r) (t)

where Xp,” and X, are the centroids of segment p; in
utterance r and ¢; in utterance f, respectively. The
entire match is found by

L
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where dr(pi, qi|pi-1, qi—1) is the cost associated with
the transition from node (p;—1, ¢;—1) to node (pr, ¢1),
and f(r,t) is a distance normalisation factor. There

exists a variety of strategies for choosing d, and f.
In the present work, d; is chosen as

1, u=p—-1Av=¢q—-1
u=p—2ANv=q-—1
u=p—1ANv=¢g—2
o0, otherwise,

(5)
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where o, f > 1 are constants that decide the penalty
assoclated with deletions and insertions, respectively.
The normalisation factor f(r,t) is chosen to equal the
number of segments in the utterance z(*).

The DTW algorithm is the core of the proposed
labelling scheme described below:

For each word:

1) Represent each training token as a sequence of
centroid vectors

2) Find a reference token as the utterance that has
the smallest average DTW-distance to all other ut-
terances of that word.

3) Employ DTW to align each training token with the
reference token. All acoustic segments aligned with
the same segment of the reference constitute a clus-
ter. Acoustic segments not aligned with any reference
segment make up a single-member cluster.

4) Label each cluster by the index of the nearest code-
word according to

M
i = argmin Z ||>_<1(,lfn’”) —c|l’, e €eC, (6
i€l m=1

where M 1s the size of the cluster. Each cluster mem-
ber is identified by the segment number (p,,) and ut-
terance number (k).

3.2. Joint resegmentation and labelling

The idea of this scheme is to assign tdentical label-
sequences to all utterances found of the same word
in the training data. The label sequence and the seg-
ment boundaries in each utterance should be chosen
so that an overall objective criterion is minimised.
Utilising the minimum squared error criterion, the
optimal number of segments J’ and the optimal label
sequence {if,...,75,_,} is given by
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where
K 1s the number of utterances,
xﬁf) is frame n in utterance k,
B s segment boundary j in utterance k, and

J
C 1s the codebook created from the initial

acoustic segmentation.

This optimisation problem can be expressed as a
search through a trellis, where each state in the trellis
1s associated with one codeword in the codebook. The
path through the trellis should be chosen so that the
overall distance with regard to all utterances is min-
imised according to equation 7. In this framework,
additional requirements regarding the minimum du-
ration of each subword unit is easily incorporated.

The solution to the given problem can be found by
the Modified Tree-Trellis algorithm [4]. The problem
formulation is very similar to the joint log-likelihood
maximisation traditionally performed by the Modi-
fied Tree-Trellis algorithm. There are two main dif-
ferences. First, the probability density function cal-
culation traditionally associated with each state is re-
placed by an Euclidean distance calculation. Second,
no transition probabilities are included in the distance
score. The transitions only describe the legal succes-
sors of each node in a state-space description.

In the optimisation described by equation 7, the
optimal segment boundaries in each utterance are
found as a by-product. These boundaries are needed
for training of the HMMs, as described by step 4 of
the training procedure.

Due to the large search-space, the Modified Tree-
Trellis algorithm may suffer from memory shortage.
In the present work we have utilised the Extended
Multiple Candidate Method [5] to constrain the search-
space. This is a two-step procedure. First the search
space is constrained by a ML-search for the N best
baseforms for each utterance of the given word. Now,
the solution to the baseform selection problem is the
one baseform that maximises the joint likelihood of
all utterances of the word. The size of N in the
N-best search will affect the quality of the resulting
lexicon. In [5], experiments on a phonemic subword
based speech recogniser showed little increase in per-
formance for N > 5.

4. EXPERIMENTS

The proposed systems have been tested on the database
TI20, a subset of TI46. This corpus contains 16

speakers. The vocabulary consists of 20 words; the
digits and ten computer-related words. It is cho-
sen for these initial experiments because 1t contains
a small number of words uttered in isolation, which
eliminates the problem of identifying the word bound-
aries for use in the training phase. The database also
contains enough different speakers to give a reason-
able inter-speaker acoustic variability.

For the initial segmentation, a distortion thresh-
old is required. As proposed in [2], this was set to
e = 0.065 for a system utilising 14 linear prediction
derived cepstral coefficients. This feature set was
used for segmentation and labelling. For modelling
and recognition we chose to use a more standard 39
component feature vector as in [8]. Feature vectors
were extracted every 15 ms using a 45 ms Hamming
window in both cases. In the segmentation proce-
dures, the duration of a subword was constrained to

be at least 30 ms.

The Extended Multiple Candidate Method with
N = 20 was used both in the joint resegmentation
and labelling scheme and for baseform optimisation
with both labelling schemes.

The ASWUs were modeled by one-state HMMs.
Experiments were performed with one to five compo-
nents in the Gaussian mixture pdfs. For each model
set, two 1terations of the combined optimisation of
baseforms and subword models were performed, re-
sulting in a different number of distinct subword units
in the different lexicons. The upper limit of subword
units is S, which is the size of the codebook. For small
vocabularies, the baseforms will often be composed of
less than S different ASWUs in total. In these exper-
iments, S was set to 128, and the resulting number
of units after baseform optimisation ranged from 102
to 110.

In addition to the proposed ASWU-based systems,
three reference systems were designed. These systems
were based on whole-word models, phoneme subword
models, and acoustic subword units, respectively. The
ASWU based system employed an unsupervised la-
belling scheme, and no combined optimisation of base-
forms and subword units was performed. This system
18, except for the baseform optimisation method, very
similar to the systems proposed in [1, 2]. All systems
were tested with different numbers of components in
the Gaussian mixture pdfs. An overview of the tested
systems is given below:

(a) The proposed ASWU-based system employing the
centroid-alignment-constrained labelling scheme. 102-
110 models were utilised with 1 state per unit and 1-5
mixtures per state. Two iterations of combined opti-
misation of HMMs and baseforms were performed.

(b) The proposed ASWU-based system employing
the joint resegmentation and labelling scheme. 103-
105 models were utilised with 1 state per unit and 1-5
mixtures per state. Two iterations of combined opti-



misation of HMMs and baseforms were performed.

(c) A system based on whole-word models. 20 mod-
els were used, each with 7 states per word and 1-3
mixtures per state.

(d) A system based on context independent phoneme
models. 29 models were used, each with 3 states per
phoneme and 1-5 mixtures per state. A standard lex-
icon was utilised.

(€) A system based on ASWUs with 1 state per unit
and 1-5 mixtures per state. The training of this sys-
tem followed the scheme outlined in section 1, except
for step 3. The labelling was performed in an un-
supervised manner, as described by equation 2. No
combined optimisation of HMMs and baseforms was
performed.

In table 1 word recognition rates and the number
of free parameters in the HMMs are shown for the
five different systems.

Mix. | (a) (b) () (d) (e)
1 98.0% | 98.7% | 93.9% | 98.0 % | 75.0%
8690 8216 | 11060 6873 8137
2 98.4% | 99.5% | 99.4% | 99.3 % | 69.4%
16590 | 16274 | 22120 | 13746 | 16116
3 99.3% | 99.9% | 99.7% | 99.6 % | 73.3%
24648 | 24648 | 33180 | 20619 | 24411
4 99.7% | 99.6% not 99.6 % | 70.8%
32232 | 32864 | tested | 27492 | 33496
5 99.7% | 99.9% not 99.8 % | 72.5%
41870 | 41475 | tested | 34365 | 41080

Table 1: Word correct rate and number of free pa-
rameters for the described systems.

The results in table 1 show that the constrained
labelling procedures of section 3 together with the
combined optimisation scheme for baseform genera-
tion and subword modelling clearly improve the per-
formance compared to an ASWU based system which
does not include these methods. This is mainly due
to the labelling schemes, which ensure that all utter-
ances of a given word are labelled similarly or iden-
tically. For speaker independent systems, we believe
an unsupervised labelling scheme will result in a too
inconsistent labelling, which is not a good basis for
the model estimation.

The proposed ASWU based systems should also
be compared to the systems based on whole-word
models and phoneme subword models. The perfor-
mance of these systems relative to each other is hard
to analyse on this task, as they all give recognition
rates very close to 100%. Even though the systems
must be said to perform equally well for this corpus,
the proposed systems should be tested on a speaker
independent database of larger complexity to give cer-
tain conclusions. This is subject to further research.

5. CONCLUSIONS

We have presented two different methods for incorpo-
rating simple word-level linguistic knowledge into the
labelling of acoustically segmented speech. A com-
bined optimisation scheme for baseform generation
and subword modelling has also been investigated in
the context of speech recognition utilising ASWUs.
These procedures resulted in greatly improved sys-
tem performance. The proposed systems gave recog-
nition rates comparable to systems based on whole-
word modelling and phonemic subword modelling.
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