Speech Recognition in Noise Using On-line HMM Adaptation
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ABSTRACT

In this paper, a novel two-stage framework is proposed
to copy with speech recognition in adverse environment.
First, an on-line HMM composition method which
compensates HMMs making use of the on-line testing
utterances is proposed in the first stage. By using the
proposed method, the dynamic change of environmental
noise in each utterance can be well handled. In addition,
a classifier trained by using a discriminative learning
procedure is incorporated in the second stage to enhance
system’s discrimination capability. Since the recognition
and adaptation processes are carried out in the same
session in an unsupervised fashion, this proposed two-
stage framework is suitable for practical uses.

1. INTRODUCTION

The parallel model combination (PMC) method [1,
2] has been shown to be effective for speech recognition
in noise. Especially, the PMC method, unlike other
environmental adaptation methods [3], needs no speech
data in the testing environment for parameter
compensation. By using the PMC method, however, the
environment noise should be collected in advance to
construct a noise HMM. Afterwards, the original HMMs
are combined with the noise HMM to build the
environment-dependent HMMs.

In general, the PMC method performs well as the
adaptation environment is the same as the testing
environment. However, the environmental noises usually
change from time to time in real applications. If the
environment changes slowly, the PMC compensating
procedure can be repeated at a period of time.
Nevertheless, if the environment changes rapidly or the
adaptation environment differs far from the testing
environment, the PMC method usually fails to achieve
high performance due to serious model mismatch.

An illustration of model mismatch in training and
testing under different noise conditions is shown in
figure 1. Compared to the model space in a mismatched
condition, e.g., S2, the compensated model space S1 in
the matched condition is considered to be “closer” to the
desired model space S3.
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Figure 1. Mbdel space mismatch in training and testing
under different noise conditions

In addition, the PMC compensation processes [1, 2]
obtain the model parameters by using either Gaussian
integration or maximum likelihood estimation (MLE).
Generally, the models obtained in thus ways do not
necessarily guarantee to minimize the error rate of the
test data because neither discrimination nor robustness
issues are considered in the entire compensation process.

Conceptually, to minimize the test set error, the
model space should be adapted as close as possible to
the model space of the testing data, i.e., S3 in figure 1.
For this purpose, two model adaptation methods can be
performed. One is to adapt model parameters directly
from the model space trained by clean speech. Usually, a
set of contaminated adaptation data are needed for this
kind of adaptation method to achieve a satisfactory result.
However, the requirement of contaminated adaptation
data makes this method inadequate to most applications.

The other way for model adaptation is to start the
learning process from the PMC compensated models. An
advantage for adopting this method lies in the fact that
the model space compensated by the PMC method is
much closer to that of testing data, compared to that
trained by clean speech. To start an adaptation procedure
from a better initial point can, in general, prevent from
being trapped to a poor local optimal point. Therefore,



performing adaptation from the PMC compensated
models is more likely to attain a better result.

Motivated by the above-mentioned concerns, a
two-stage framework which integrates on-line model
composition and unsupervised model adaptation in a
same session is proposed. The block diagram of the
proposed framework is illustrated in figure 2. First, the
recognized testing utterances are used for noise model
re-estimation. The re-estimated noise model is then used
for model composition to better track the environmental
change. Afterwards, following the first stage, a
discriminative classifier is adopted as the second stage to
enhance the discrimination capability of the overall
system. To minimize the error rate, this classifier is
trained by wusing MCE-based adaptive learning
procedures [4,5,6]. Experiments have shown the
proposed two-stage approach is quite affective and
robust against dynamic change of environment noise.

2. THE ON-LINE PARALLEL MODEL
COMPOSITION

To better track the dynamic change of testing
environment, the on-line parallel model composition
method first uses the testing utterances themselves for
noise model reestimation. Afterwards, the estimated
noise model is combined with the clean speech models
using the well known PMC procedure. Implementation
of this method consists of the following steps.

Step 1. Preliminary Recognition and Alignment:

To recognize the input utterances by using the
viterbi decoding scheme; then backtrack the state
sequences to obtain the frames which are aligned to
silence (noise) states.

Step 2. Noise Model Re-estimation:

To estimate the noise model by using the
information provided by the frames determined in the
step 1. Smoothing methods, such as the deleted
interpolation method, could be adopted in this step. In
this paper, the recursive ML estimation is adopted.

Let A(z) stand for the parameter estimated from
the noise portions of the previous utterances, which
contain » number of frames, and A(4) for the
parameter estimated from the noise portions of the
current utterance containing & frames. The re-estimated
noise model, denoted by A (n7+ £ ), can be repressed as
an interpolation of A(z) and A(4£). For instance, by
assuming single Gaussian mixture for each state in the
noise model, the mean value of the i-th component of a
particular state can be represented as follows:
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Meanwhile, the corresponding variance can be re-
estimated according to the following expression:
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Figure 2. System Block Diagram
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where m? (n)= 1 > x2( j) denotes the estimated
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Step 3. Model Composition:

To compose the original HMMs with the re-
estimated noise model using the PMC method.

It is noticed that no matter what the recognition
results conduct, only the aligned noise portions of the
input utterances are of interest in the step 2. Therefore,
this framework is able to perform under an unsupervised
condition. In addition, having the unsupervised learning
capability, the proposed on-line PMC method, unlike the
conventional speech adaptation/recognition scheme, can
carry out the model adaptation and recognition processes
in the same session. Thus, the on-line testing utterances
can be used for adaptation to cope with the dynamic
change of environment in each testing utterance.

3. DISCRIMINATIVE LEARNING
Regarding to the PMC approaches [1, 2], the



models are compensated by using either Gaussian
integration or maximum likelihood estimation (MLE).
The models obtained in thus ways do not necessarily
guarantee to minimize the error rate of the test data
because neither discrimination nor robustness issues are
considered in the entire compensation process.

To minimize the error rate, a classifier is adopted
in the second stage. In this classifier, the discrimination

function g, (0) of the input utterance (O with respect to
the j-th word I, is defined in terms of weighted HMM

J
[4] as follows:

NI
£ (0) = AZIW,/.A' 'SC_/,k )
where NV, stands for the total number of distinct states
representing W;; SC, , for the accumulated log

probabilities assigned to the k-th state; w, , for the

corresponding state weight. Initially, w, , forall j and &

are set to one. The word W __ is considered as the

opt
recognition result if this word leads to the maximum
value of the discrimination function; that is:

|14

opr = Argmax g, (O)
W,

Furthermore, based on the discrimination function,
a distance function measuring the degree of miss-

recognition between two competing candidates W, , W,
is defined as follows:
d, (0)=g,(0)-g, (0.

In a supervised learning procedure, W, stands for the
correct candidate, and ¥/, for the top competitor. Hence,
a recognition error occurs in case d,, (0)<0. On the
other hand, when the learning procedure is performed in
an unsupervised fashion, W, stands for the top
candidate and W, for the top second candidate.

Afterwards, a loss function as an approximation of
error function needs to be defined. Currently, the loss
function is defined as follows:

s
g(d)={tan (d“) d <0,

0 otherwise ,

where ¢, is a small positive constant. To taking

robustness issue into  consideration while the
probabilistic decent theory is applied, the adjustment of

parameters AA, at time ¢ would satisfy the following
equations [4, 6]:

A=A, +AA,, if d(0)<r,

AA, = —£(1)UVR,

where z'(r > 0) is a preset margin; 8([) is a decreasing
function of £, U is a positive-definite matrix, which is

assumed to be an identity matrix in this paper; R is the
averaged loss function. Readers who are interested in the
learning algorithm are pleased to refer to {4, 5, 6] for
details.

4. EXPERIMENTAL EVALUATION

4.1 Experimental Setup

In following experiments, the acoustic feature
vectors are extracted from the 8KHz sampled data every
10msec. Each feature vector is composed of 12-order
mel-scaled cepstral coefficients and the corresponding
delta cepstral coefficients. A total of 58 phone-like units
(PLU) HMMs are used as acoustic units for speech
recognition. Each PLU is modeled by a 3-state 4-mixture
continuous density HMM. The training of clean speech
PLU HMMs was carried out by using the following two
speech databases:

[1] utterances from 90 speakers (50 male and 40 female),
each speaking 408 Chinese 408 base syllables.

[2] utterances from 16 speakers (5 male ad 11 female),
each speaking 479 poly-syllable words.

In addition, a task of recognizing 120 person names is

used for evaluation. In the following experiments, the

testing set consists of 600 utterances recorded from 5

male speakers. These utterances are mixed with the

NOISEX-92 speech noise data at 4 different levels,

ranging from 0dB to 18dB.

First, to investigate the effect of noise type
mismatch on model compensation, the experiments are
performed under the following two conditions:

(1) noise-type matched condition, i.e., the noise type in
the training environment is the same as that of the testing
environment.

(2) noise-type mismatched conditions, i.e., the noise
types in the training environment are different from that
of the testing environment. Here, three types of
NOISEX-92 noise source, including car noise, machine
gun noise and lynx noise are used for model composition.
Those composite models are then used to recognize the
test data contaminated by speech noise.

4.2 Results and Discussions

Table 1 summarizes the performances at different
noise levels using the clean speech models, PMC
compensated models in the matched and mismatched
conditions, and the on-line PMC. As shown in table 1,
we find that the PMC compensated models, even with
very mismatched noise, e.g., the machine gun noise,
achieve better performances in comparison with the
model trained by clean speech. It is also found in table 1
that compensation with the appropriate noise would
achieve a better result. For instance, the PMC method in
the matched condition attains the performance 3-17%
better than those obtained in the mismatched conditions
when SNR is equal to 6dB. Particularly, as regard to the
proposed on-line PMC method, it achieves the
performance almost as high as that obtained by the PMC
method in the matched condition. The promising result



demonstrates that the proposed on-line PMC method is
quite robust against environment changes.

0dB 6dB 12dB 18dB
Clean 12.5 358 | 716 | 842
PMC (Car) 17.5 542 1 792 | 892
PMC (Gun) 17.5 40 7177 875
PMC (Lynx) 172 | 517 | 825 | 917
PMC (Speech) 18.3 575 | 825 | 917

On-linePMCq 217 | 558 | 83.3 I 90.8 |

Table 1. Performances of various PMC-based methods.

Furthermore, to evaluate the proposed two-stage
approach, the learning procedures in unsupervised and
supervised manners are applied to adjust the weight
parameters of the classifier in the second stage. It is
noticed that users are supposed to provide the system the
correct answer for each utterance in the supervised
learning procedure. However, in the unsupervised
learning mode, the system assumes that the recognition
result is the correct candidate.

The results of the two-stage approach are listed in
table 2, where UDL and SDL correspond to the
unsupervised and the supervised discriminative learning,
respectively. Note that the result with the supervised
learning servers the upper bound which the proposed
two-stage approach can achieve.

0dB | 6dB | 12dB | 18dB
On-line PMC+UDL | 21.7 | 583 | 83.5 | 91.7
On-line PMC+SDL | 22.5 | 717 | 908 95
PMC(speech)+UDL | 21.7 | 583 | 83.5 | 925
PMC(speech)+SDL | 22.5 71.7 | 90.8 95

Table 2. Performances of the two-stage framework.

Compared to the result in table 1, the unsupervised
learning provides limit improvement. The reason why
the unsupervised learning fails to get much improvement
lies in the fact that the learning procedure tends to be
trapped to a poor local optimum easily without a good
supervision. This problem is particularly serious when
SNR is low.

In contrast, if the discriminative learning is
performed in a supervised manner, the performance is
improved significantly at wide range of noise levels.
Therefore, appropriate incorporation of confidence
measures into the learning procedure might provide a
way to bridge the broad gap between the unsupervised
and the supervised learning procedures.

Moreover, for comparison’s sake the performances
of applying the discriminative learning procedures
starting from the PMC compensated models are also
listed in table 2. The corresponding results show almost
the same as those with the proposed two-stage approach.

Again, those results demonstrate the superiority of the
proposed approach to cope with the problems of speech
recognition in noise.

S. SUMMARY

In this paper, a two-stage framework is proposed
to copy with speech recognition in adverse environment.
In the first stage, an on-line PMC method which
compensates HMMSs making use of the on-line testing
utterances is proposed. By using the proposed method,
the dynamic change of environmental noise in each
utterance can be well handled. In addition, a linear
classifier trained by using a discriminative learning
procedure is incorporated in the second stage to enhance
system’s discrimination capability. Since the recognition
and adaptation processes are carried out in the same
session in an unsupervised fashion, this proposed two-
stage framework is suitable for practical uses. Even
thought the unsupervised discriminative learning shows
limit improvement, the supervised learning procedure
provides a significant improvement. Therefore, to find
out a better way for applying the unsupervised learning
procedure, such as providing a confidence measure, will
be our future research.
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