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ABSTRACT

This paper addresses the problem of speech recogni-
tion through telephonic networks. When the com-
munication channel is unknown, the important mis-
match between training data and signal encountered
in recognition phase decreases drastically the perfor-
mances of the recognition systems. In this context,
we compare a classical approach: the noise compen-
sation method with novel robust networks modellings
aiming to incorporate and manage more variability in
the training data.
We introduce multi-HMMs and multi-transitions sys-
tems, trained with data recorded through analog
switched network and cellular phone network. These
architectures present best results and succeed in im-
proving the recognizers robustness since they achieve
up to 77 % reduction of the error rate for a sys-
tem trained for switched telephonic network and used
with cellular phone. Nevertheless, this modelling re-
quires training data recorded in both environments;
when such data are not available, noise cancellation
or channel compensation are the only a�ordable so-
lutions.

1. INTRODUCTION

Hidden Markov Model-based speech recognizers of-
fer realistic solutions for creating interactive vocal
servers, but an acoustical mismatch between training
and testing conditions causes a severe degradation in
the recognition performances. When using the tele-
phonic channel, it is impossible to know in advance
in which noise environment the system will be used,
and what kind of telephonic network will support the
communication. To minimize this e�ect, many stud-
ies have been performed to �nd more robust signal
processings (as spectral subtraction [2]) and e�cient
distance measures [6] or to propose or adapt new rec-
ognizer models [4].
In this paper, we propose and compare two HMM-
based speech recognizers :

� a Noise Compensation system where an
adaptative noise spectral subtraction is per-

formed; its originality lies upon the use of a seg-
mentation algorithm with a speech activity de-
tector,

� a robust HMM architecture : multi-network
and multi-transitions modelling aiming to sup-
port and manage more variability during the
training of the system.

We compare the results obtained by these methods on
CNET speech corpora recorded with telephonic and
cellular phone noise conditions (GSM system).

2. NOISE COMPENSATION

SYSTEM

2.1. General method

The �rst set of methods we introduce consists in pre-
processing learning and test data in order to deal with
the noise that corrupts the speech signal.
When assuming that the signal x(n) is the sum of
the speech s(n) and a non correlated noise b(n), short
term stationary

x(n) = s(n) + b(n) (1)

In the spectral domain

�x(!) = �s(!) + �b(!) (2)

where �x(!) is the short term power spectral density
of x(n). The general method of spectral subtraction
[2] consists in computing the speech spectrum esti-
mate

Ŝ(!) = jX(!)j � jB̂(!)j (3)

The principal problem is the estimation of the noise
jB̂(!)j, in this purpose we proceed the following
steps :

� an automatic segmentation algorithm [1] detects
the frontiers of quasi-stationary zones of the sig-
nal,



� monitoring of the curvilinear abscissa of the tem-
poral signal [8] gives a crude detection of speech
endpoints. The temporal coordination between
these results provides the �noise/speech� la-
belling of each segment and robust endpoints,

� evaluation of jB̂(!)j on the longest noise seg-
ment.

This mean vector is subtracted to each frame in the
spectral domain, using a weight coe�cient function
of the SNR.

2.2. Segmentation

The segmentation algorithm is the �Forward-
Backward Divergence� [1] that locates quasi-
stationary zones in the signal. This �rst step of the
processing will bring information for the speech ac-
tivity detection, and make easier the pseudo-diphone
modellisation used by our recognition system.
We assume the signal is represented by a string of
homogeneous units, each of them represented by an
Auto-regressive model. The method consists in de-
tecting changes in the model parameters. We obtain
segments of three kinds :

� stationary segments corresponding to steady
parts of the signal,

� transition segments in which a formantic struc-
ture can be found, with monotonous behavior,

� short segments (10 ms) corresponding to articu-
latory changes, like plosives explosion.

This segmentation algorithm detects all speech/non-
speech boundaries, but does not identify them as
such.

2.3. Noise estimation

2.3.1. Noise/Speech detection

The segmentation module provides a list of bound-
aries corresponding to spectral modi�cations of the
signal, but without identifying the location of each
segment : speech zone or a noise zone. Many speech
activity detectors have been presented yet, but none
use a segmentation algorithm; some techniques use
pattern recognition methods, like [5], some use par-
ticular acoustic coe�cients like zero-crossing rate, en-
ergy, etc... Our approach is based on the fact that,
even if energy is not a robust parameter in noisy con-
ditions, maxima of the signal amplitude always cor-
respond to vocalic cores [8].

So, we process the two following steps :

Static labelling : In a �rst time, the curvilinear
abscissa s(t) of the speech signal y(t), where t is the
sample index, is computed. Let the function :

S(n) = s(nL) � s((n � 1)L)

where L is a �xed number of samples (a frame).
S(n) represents a mean value of the �curve length�
by time units. Assuming the noise to be stationary
for each segment, the S function will show very little
variation in noise zones, increase perceptibly when en-
tering a speech zone and decrease when coming back
to a noise zone.
The mean Si and standard deviation �(Si) of S

for the segment i will represent our speech or noise
indicator.

Two thresholds are used : �1 and �2, automatically
computed on the �rst signal frames assumed to be
noise only.

�1 = Sb + �(Sb) and �2 = n� �1

where n is a threshold to discriminate the mean
level of curvilinear abscissa between noise and noisy
speech. On our corpora, a good value of n is 3.
The static labelling consists in comparing the means
and standard deviations of S by segment to those
thresholds.

Temporal coordination : We use the following
rules for each segment : an isolated speech segment is
classi�ed �noise�, a short noise segment between two
speech segments is classi�ed �speech� if its duration
is less than 80 ms (maximum of a plosive silence).
Last, exceptions are taken into account in order to
manage some particular cases (very low SNR, impul-
sive noise near a speech zone). At the end of this step,
we own the �nal labelling of the segments, and so, the
position of speech and noise zones in the signal.

2.3.2. Mean noise vector estimation

The best way to evaluate the noise estimation jB̂(!)j
is to use the longest noise zone available in the tem-
poral domain. This zone is divided in frames of 256
samples, with a 128 samples overlapping. Once in the
spectral domain, each frame will give a short term
power spectral density vector. jB̂(!)j is computed as
the mean of these vectors.

2.4. Noise compensation

We have implemented the Linear Spectral Subtrac-
tion algorithm, this method consists in subtracting
the estimate of the noise power spectral density to the
power spectral density of each frame of noisy speech.
One of the risks of this method is to operate a too
brute subtraction in the low SNR zones, where speech



signal can be confused with noise, so when SNR is too
low (less than 5 dB), we use a weight coe�cient (pro-
portional to the SNR) to attenuate the e�ects of the
subtraction. E�ectively, our priority is to privilege
the speech signal integrity on the noise compensation
e�ciency.

3. ROBUST NETWORK

ARCHITECTURES

3.1. Introduction

To take more variable conditions into account, it is
current to increase the number of HMM parameters,
the more classical method consists in using multi-
gaussian distributions [3].
We propose a more supervised increasing of the num-
ber of the model parameters, by speci�c network
modelling. The idea is to provide more variability
to the system to be trained, and to support this vari-
ability with this greater number of parameters.
[9] and [4] proposed solutions aiming to model sep-
arately speech and noise in a HMM, our approach
is rather di�erent : we introduce two robust HMM
architectures :

� Multi-HMMs are built by gathering several
HMMs. A speci�c database is collected from
each noise context to train a primary HMM;
the noise contexts correspond to di�erent kinds
of telephonic networks (analog, digital, cellular
phone). A multi-HMM is obtained by gathering
the initial and �nal states of each primary HMM.

� Multi-transitionsmodels are designed to improve
the number of probability density functions of
the model, by improving the number of transi-
tions between each state. As previously, we use
various noisy speech corpora to initialize each
law corresponding to a noise context. For in-
stance, one law is initialized using telephonic
data, another one is initialized with cellular
phone data, and a last law is initialized with both
kind of data. Then, the whole system is trained
using all available corpora.

3.2. Multi-HMMs

The idea of this method is to use di�erent parallel
networks for each unit to recognize. A classical ex-
emple consists in modelling separately male and fe-
male speakers. Both model are trained separately on
two partitions of the corpus (men and women), then
gathered by a common beginning and ending state.
In our application, multi-HMMs are built separately
and each one is trained on a corpus relative to a noise
context. The di�erent noise contexts correspond to
di�erent kinds of telephonic networks (analogic, dig-
ital, cellular phone).

Then, the �rst and last state of each HMM is con-
nected to a common beginning and ending state, as
presented in �gure 1.
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Figure 1: Exemple of multi-HMMs.

Using n HMMs, this method multiply by n the num-
ber of states and transitions of the original model.

3.3. Multi-transitions

Our objective is to improve the number of probability
density functions of the model. In our HMM struc-
ture, Gaussian laws are associated with the transi-
tions, so we multiply the number of transitions be-
tween each state to improve the number of laws (�g-
ure 2). So, multi-transition models use a partition of
the data: various noisy speech corpora are used to
initialize each law corresponding to a noise context.
Then, the whole system is trained using all available
data.

Figure 2: Exemple of multi-transition.

Using m probability density functions, this method
multiply by m the number of pdf of the original
model.

3.4. Multi-HMMs of multi-transition

These two methods can be combined in multi-models
of multi-transitions: the number of parameters is
signi�cally augmented, the learning corpora include
more variability, so that the system is drastically
more robust. With n HMMs, each using m transisi-
tions between each state, we multiply by n the num-
ber of states and by n�m the number of transitions
of the original model.



4. EXPERIMENTATION

All these methods have been tested on two CNET cor-
pora of 16 words pronounced by one hundred speak-
ers : a telephonic and a cellular phone corpus, with a
segmental pseudo-diphone HMM recognition system
using continuous densities laws.
Only one acoustic vector is used for each segment :
this vector corresponds to the spectral analysis of
the central frame of the segment. We use 8 Mel-
Frequency Cepstral Coe�ents and 8 derivatives ob-
tained by regression on the neighbouring frames, en-
ergy of the frame and its derivative, and length of the
segment.
The average error rate of our system is 13.2 % when
tested in mismatched conditions. Noise compensa-
tion presents an average error rate of 9.6 %. Fig-
ure 3 shows error rates evolution when using robust
architectures modelling; each set of columns presents
results obtained on a telephonic environment.
First and second columns of both sets present, for
comparison, results obtained in matching conditions
and with a basic mixed training (all available data of
both environments used to train an ordinary HMM).
Last 3 columns present results of the robust archi-
tectures: multi-HMMs reduce the error rate of 64 %
(col. 3); multi-transitions reduce this rate of 70 %
(col. 4); multi-HMM of multi-transition reduce the
error rate of 77 % (col. 5).
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Figure 3: Results of experimentations.

5. CONCLUSION

Robust architectures are drastically more e�cient,
but the use of this method depends on the existence of
learning corpora corresponding to various noise con-
texts. When it is possible to record the same speech
corpora in various noise contexts, the robust archi-
tectures achieve very good performances for building
a unique model.
When impossible, noise compensation or channel
equalization are the only a�ordable solutions.
Evolution of the method include a combination of net-
work modelling and channel e�ect compensation by

cepstral subtraction [7].
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