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Abstract

In automatic speech recognition (ASR) of broadcast news
shows the input utterances are often corrupted by background
music and noise. This paper proposes a new method of au-
tomatic segmentation a speech signals according to the back-
ground: music, clean or noisy. LPC analysis is used to extract
the poles of the associated transfer function. Based on the
time evolution of the poles it is possible to discriminate the
contributions of music, speech and noise: music poles are sta-
bler longer than speech poles while noise poles have a more
unstable behavior than speech poles. Once the background of
a signal is identified, poles tagged as non-speech can be sep-
arated from speech poles. Using only the speech poles along
with the LPC residuals, it is possible to reconstruct a new

signal freed of music and noise contributions.

1 Introduction

In the context of ARPA’95 HUB/ the evaluation task
consists into automatic transcription of radio broad-
cast news shows from the Market Place program [2].
A typical radio broadcast news contains speech and
non-speech signals from a large variety of sources like
clean speech, band-limited speech (produced by some
types of microphones), telephone speech, music seg-
ments, speech over music, speech over ambient noise,
speech over speech, etc...

IBM solution groups the data into four broad cat-
egories of signals [10, 5]: clean speech, telephone-
quality speech (telephone speech and some bandlim-
ited microphones), speech with music and speech
with noise. Different models (mixtures of Gaus-
sians for each leferne) were trained over each of these
classes.

The automatic segmentation of a signal can be done
in different ways. If similar training data has already
been segmented and tagged according to the environ-
ment, all the data with a same tag can be clustered
with mixture of Gaussians distributions (*). Dur-
ing segmentation, the feature vectors of each frame is
tagged like the class which produces the largest con-
ditional likelihood. Additional length constraints are
imposed as the background is assume to present some
stability [11].

Within the class speech and music, speech signals
are decoded using parallel models which have been
trained by corrupting clean speech with superposed
music [11, 10]. In order to reduce the word error rate

it 1s also interesting to suppress as much as possi-
ble of the background music. The method proposed
in [12] relies on the observation that for broadcast
news, the speech and music segments often contain
music closely related to the immediately preceding
or following pure music segment. Using the pure mu-
sic segment as reference, noise canceling methods are
implemented to extract the speech contribution. Ex-
periments show that this method helps to slightly
reduce the error rate under some conditions where
the echo behavior is indeed present. However, with
longer segments or in more general cases, the result-
ing signal is only partially rid of music. Hence the
interest of a more universal approach.

2 LPC analysis

LPC analysis (linear predictive coding) is now a com-
mon technique in speech processing [15, 9]. It is a
classical spectral estimation by auto-regression which
has straightforward physical interpretations in the
framework of speech production models.

Indeed, LPC analysis is perfectly adapted to char-
acterize excited oscillators. It can easily be shown
that the poles of the resulting all-pole transfer func-
tion characterize the resonant frequencies of the mod-
eled system and their associated decay time (or band-
width).

3 LPC analysis of speech

It has been repeatedly shown that constrained pole
tracking in the case of speech amounts to formant
extraction [3]. The constraints impose continuity and
smooth evolution of the center frequencies.

However, from frame to frame, the spectrum is slowly
varying with a time constant of a few tens of millisec-
onds. Indeed, in the context of the source filter model
for speech production, speech signals result from ex-
citations of the vocal tract by a quasi-periodic signals
produced by vibrating vocal cords (voiced sound) or
by turbulent flows expelled from the lung through
an open glottis (unvoiced sound). Mouth, nasal cav-
ity and larynx are among the cavities whose specific
resonant frequencies shape the spectrum of the pro-
duced speech. The resonant frequencies are defined
by the vocal tract geometry, which in turns depends
on the individual and on the position of the articula-
tors for different sounds produced by a same individ-
ual. Inter-speaker variations of the vocal tract can



be used for speaker recognition [4, 14]. From phone
to phone the articulators must change position in a
smooth and continuous way. This constrained be-
havior is responsible for effects like coarticulation or
the smooth and continuous evolution of the formants.
This smooth evolution is actually one of the main
characteristic used for formant extraction [14].

4 LPC analysis of music

Musical sounds are defined as smooth, regular, pleas-
ant and harmonic sounds. Music pitch (i.e. in less rig-
orous terms the fundamental frequency) is defined as
the attribute of auditory sensation in terms of which
sounds are ordered on a scale extending from low to
high. In the equally tempered scale covering the hear-
ing range from 16 Hz to 16 kHz, there are only 120
discrete tones [16]. Musical instruments are quan-
tized in that only certain frequencies are allowed and
others are ruled out: the pitch is located at these
tone levels and the harmonics are located at frequen-
cies obtained by multiplying or diving the pitch by
powers of 213

The principal reason for the definite and unique fre-
quencies is that most of the instruments (except the
instruments like the violin family or the trombone)
are resonant systems with fixed resonant frequencies
that can not be altered at will [8].

5 LPC analysis of unstructured
noise

In this paper, it is assumed that noises are unstruc-
tured random signals. Indeed, pure sinusoids or simi-
lar well structured signals could also appear as noise,
but the method devised in this paper is unable to han-
dle them correctly without some a priori additional
information.

Because the signal is unstructured, no resonance can
be found or the resonances are present an random
behavior. LPC analyses still manage to model such
signals within each frame. However, there is no co-
herent behavior among models built for different suc-
cessive frames. In other words, the behavior of the
poles of the all pole transfer function is totally erratic
from frame to frame.

6 Automatic segmentation

The previous sections illustrate the difference in be-
havior of poles associated with music, speech or un-
structured noise. These differences can be used to
automatically segment a signal according to its con-
tent.

Different order of LPC analysis can be used. Typi-
cally, we use between 24 and 32 for music detection
and 12 to 18 for speech detection. Comparisons will
be presented. Our LPC analyses are implemented
with the autocorrelation method [7]. The analysis is

performed on a frame by frame basis. Each frame is
defined by a Hamming window of size 25 ms. The
window shifts are 10 ms. From the LPC coefficients,
the poles are extracted as roots of the associated poly-
nomial in z~! with a stabilized Laguerre root finding
method [1].

A pole tracker based on dynamic programming, as de-
scribed in 3], can be use for efficient tracking. How-
ever, in order to speed up and simplify the process-
ing, we use a simple VQ (vector quantizer) in order
to detect the presence of speech and music.

The poles are arranged in the unit circle in the z do-
main. Because we used the auto-correlation method,
the poles are guaranteed to be inside the unit circle.
If an implementation technique other than the auto-
correlation method is used (e.a. covariance method),
it is mandatory to stabilize the computation by using
some pseudo-inversion (SVD). Indeed pole massaging
as described in [17] is incompatible with the require-
ments of our tracking approach.

In the unit circle, the poles are clustered by VQ over
2M successive frames. The number of clusters (N)
1s equal to the order of the LPC analysis and some
poles are discarded when too far from their associated
cluster centroid. The clustering algorithm is based
on Lloyd method [13]. Let 2M be the amount of
frame used to classify frame n. The poles from frames
n — M ton 4+ M are clustered. The seeds off the
clustering are the poles of frame n. If frame n is
degenerate (i.e. contains real poles), the closest non-
degenerate frame is taken as seed. When building the
clusters, only one pole per frame is allowed in a given
cluster. In other words, some poles are associated to
the second closest cluster because another pole of the
same frame is also associated to that cluster and it is
closer.

For frame n, the variances of the N clusters are exam-
ined as function of the centroid (actually the imagi-
nary part of the pole). A decision tree [6] is built to
decide the class which better characterizes the frame
(clean speech, noisy speech, speech and music or pure
music). Music poles also follow the frequency pro-
gression mentioned earlier.

The length constraints mentioned in [11] are im-
plemented with a voting procedure. For frame n,
argmaz of the histogram of the classes selected in
a vicinity of L frames finally select the class where
frame n belongs. Typically, L covers a few seconds
but it can be reduced to suit application require-
ments. As the resulting boundaries are fuzzy and
depend on the type of voting algorithm. A solution
for ASR consists into decoding the signal with a uni-
versal model. The resulting Viterbi alignments are
matched against the segmentation boundaries to fi-
nalize the segmentation and reduce cuts in the middle



of words.
Results are presented in table 1 for the 1995 Market
Place development data:

| Class 1 Miss % l Err % |
Pure Noise 0.5 2.9
Pure Music 4.6 2.5
Pure Speech 9.1 3.1
Speech + Music 4.2 27
Speech + Noise 15 23

These numbers should be compared with the HMM
segmentation described in [11].

7 Music cancellation

At this stage, poles can easily be tagged according
to their behavior. This is true for the V@ approach
as well as for any more sophisticated dynamic pro-
gramming tracker. The pole categories are: slowly
evolving, speech behavior, random behavior, spurious
behavior. These categories are self explanatory. Spu-
rious poles are real poles which appear within some
frames and rather characterize spectral slopes.
Speech poles, which are essentially formant-based
and optionally spurious poles can be extracted from
he LPC analysis of frame n. Using the K selected
poles, Hjean(z, 1) is constructed as the all pole trans-
fer function or order K of frame n. The residual sig-
nal of the initial LPC analysis on frame n, is used
to excite Heean(2,n) in order to synthesize a new
clean signal feean(n). MEL cepstra are thereafter
extracted from f.ean(n), which is already multiplied
by a Hamming window. Classical acoustic front-end
processing is performed prior to automatic recogni-
tion. Note that the models of the recognition engine
must be re-trained over these new features to take
into account the non-linear mapping. Also, the sub-
jective quality of the cleaned signal is of no concern
for our project. Of course, subjective criterion could
also be included if desired.

Alternatives exist. If the next level of processing
can handle LPC-derived cepstra (C;(n)), we can di-
rectly use Schroeder’s formula restricted to the se-
lected pOICS: Cl(n) = -:ZL Zke {selectedpoles} (Zk(n))l'
When these cepstra are not acceptable, 1t i1s possi-
ble to use a neural network to map the LP(C-derived
cepstra to the MEL cepstra instead of going to the
complete process described previously.

8 Perspectives and conclusions

It is possible to repeat the same process to cancel
noise and speech from a music segment. However, as
the enhancement is designed to reduce the variability
of the feature vectors without any consideration of
the quality of the synthesized signal, the quality of
the synthesized music signal is often mediocre.

Within the clean speech category, it is possible to
separate the speech poles from the others. These
non-speech poles can be classified with mixture of
Gaussians distributions (*) as described earlier and
in {10, 11]. It is thereafter possible to classify the
channel. The speech recognizer can now use mod-
els adapted to acoustically similar channels or to use
specially adapted algorithms.

Transcription of broadcast shows (news, talk shows
or even more general programs) require music detec-
tion, segmentation and cancellation whenever super-
posed to speech. This paper propose simple and effi-
cient methods to satisfactory fulfill these tasks which
are mandatory steps towards efficient automatic tran-
scription of found speech and audio indexing.
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