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ABSTRACT

This paper examines techniques for normalization of
unseen speakers in recognition. Two implementations of
linear spectrum warping were examined: time domain
resampling and filter bank scaling. It is shown that for seen
speakers, the models trained by unwarped utterances are
less sensitive to spectrum warping by filter bank scaling
than by resampling. A pitch-based scheme for warping
factor estimation has been proposed. The method is shown
to be cost-effective in reducing the variability of unseen
speakers compared to the ML-based methods. In
particular the combination of filter bank scaling with the
pitch-based warping factor estimation reduces the error
rate of isolated Mandarin digit recognition by more than
30% for unseen speakers.

1.  INTRODUCTION

Speaker variability is one of the major challenges in
speaker independent speech recognition. Typically, the
majority of error comes from just a few difficult speakers
whose spectral characteristics are not well represented in
the training population. A common approach to this
problem is to collect a large amount of training data,
which is time consuming and costly. When only limited
training data is available, supervised or unsupervised
speaker adaptation, or speaker normalization techniques
must be used to achieve a satisfactory recognition rate for
unseen speakers.

Vocal tract normalization by linearly warping the input
utterance spectrum [1-4] was shown to be an effective way
to reduce the speaker variability. Two different
implementations have been proposed for linear spectrum
warping. One is to resample the speech data in the time
domain [1] and the other is to scale the center and
bandwidth of Mel-frequency filters [2]. The former can be
applied to any recognizer front end, while the latter is
restricted to the filter bank types of pre-processors. Most
of the previous efforts focused on using the spectrum
warping techniques in both training and recognition to
reduce the error rate for a given benchmark task. When
used with speaker adaptation [4], spectrum warping was
shown to be effective for the case where the acoustic
mismatch is significant between the speaker population
used in training and in recognition. However, it is unclear
how to effectively apply spectrum warping alone during
recognition to  normalize  unseen speakers having a

significant acoustic mismatch with the training
population. Two issues of particular interests are which
implementation is best suited for such a purpose and how
to determine the warping factor at a minimum
computational cost. This paper reports an experimental
investigation of the above two aspects. The next section
describes the results of gender mismatched experiments
for the comparison of different warping implementations.
Next, a pitch-based scheme is presented in section 3 for
optimal selection of the warping factor in a cost-effective
way. The results using the pitch-based estimation are
compared with those using the maximum likelihood (ML)
methods [1-3]. It is shown that the pitch-based method
gives a recognition rate comparable to the ML-based
methods but at a much lower computational cost.

2.  COMPARISON OF DIFFERENT
WARPING IMPLEMENTATIONS

2.1.  Frond-end Warping Implementation

The features used in our speech recognition experiment
are 12 Mel-frequency Cepstrum coefficients (MFCC) and
12 delta coefficients. A set of 18 Mel-scale filters is used
in the spectral analysis front end. When resampling is used
to warp the speech spectrum, the input utterance is
interpolated according to the given warping factor (Wt )
before passed to the feature extraction front end. Thus the
warping process is completely independent of the feature
extraction module.

When filter bank scaling is used for spectrum warping, the
center and bandwidth of each filter are multiplied by the
warping factor (Wb=1/Wt ). Note that in this type of
implementation, the center frequency of the highest filter
may be scaled beyond the signal bandwidth. In this case,
we simply replace the output of the highest filter with that
of the next highest one [3]. As will be seen later, such a
process has a profound effect on the recognition results.

2.2.  Gender Mismatched Experiment

A multi-speaker (50 males and 50 females) isolated
Mandarin digit database was used in the recognition
experiment. Each speaker uttered one utterance per digit.
The speech signal was sampled at 10 kHz with a 32 ms
frame size and 16 ms shift. First, the male utterances were
used in training while both male and female utterances
were used in recognition. The acoustic models used in the



experiment are whole word mixture Gaussian HMMs. The
resultant recognition rates for different warping factors are
shown in Fig. 1.

Although the models were trained from unwarped male
utterances, the male recognition rate remains nearly the
same for  ±5% warping, Beyond this range, the male
recognition rate decreases rapidly for the resampling case
while much slower for filter bank scaling. Spectrum
warping by resampling will affect the utterance speaking
rate. For warping greater than 10 %, the change in the
speaking rate becomes noticeable. This may explain the
rapid decrease in the male recognition rate. Note that for
the case of filter bank scaling, there is a consistent jump in
recognition rates for different populations at Wb =1.15.
Above this warping factor, the center of the highest filter is
scaled beyond the signal bandwidth and the output of the
next highest filter is used to replace that of the highest one.
It seems that such replacement causes a significant
increase in the recognition rate. For unseen speakers
(females), filter bank scaling outperforms resampling in
the expected warping range (0.8<Wt <1; 1<Wb <1.25),
while the maximum overall recognition rate seems to be
similar between these two.
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Figure 1: Recognition rate as a function of the warping
factor with acoustic models trained by male utterances.
The speech data is warped by (a) resampling and (b) filter
bank scaling.
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Figure 2: Recognition rate as a function of the warping
factor with acoustic models trained by female utterances.
The speech data is warped by (a) resampling and (b) filter
bank scaling.

The recognition results using models trained by female
utterances are shown in Fig. 2. Again for seen speakers,
the models are less sensitive to spectrum warping by filter
bank scaling than by resampling. For unseen speakers, the
results by filter bank scaling tend to be stable (around 80
percent) in the expected warping range, while the results
by resampling reach a peak value of 91.4% at Wt =1.14.
The jump found in Fig. 1 by the filter output replacement
is clearly seen for the male recognition rate while not
noticeable for the female recognition rate. Table 1
summarizes the maximum recognition rates for different
speaker populations and their corresponding warping
factors.

Table 1: The maximum recognition rates for different
speaker populations. The numbers within the parentheses
denote the corresponding warping factors.

 (a) acoustic models trained by male utterances
Male Female Overall

Resampling 0.998 (1) 0.738 (0.93) 0.854 (0.94)
Filter scaling 0. 998 (1) 0. 802 (1.21) 0. 863 (1.08)

(b) acoustic models trained by female utterances
Male Female Overall

Resampling 0.914 (1.14) 1.0 (1.03) 0.933 (1.14)
Filter scaling 0. 882 (0.81)  1.0 (0.98) 0. 914 (0.87)



3.  A PITCH-BASED SCHEME FOR
WARPING FACTOR ESTIMATION

Estimation of the warping factor is the most critical issue
for the implementation of spectrum warping. In the ML
method [1], the warping factor is estimated by searching
over a number of possible factors and choosing the one
that maximizes the data likelihood to the acoustic models.
The method is sound but requires extensive computation.
A simplified ML approach [2,3] was suggested to reduce
the computation complexity. In the simplified method, one
first decodes the unwarped utterance and  then uses the
transcription to find the warping factor according the ML
criterion. However, if the unseen speakers have a large
acoustic mismatch with the training population, the
transcriptions of unwarped utterances may not be reliable
and nor is the warping factor estimated based on them. A
more direct and cost-effective way is to estimate the
warping factor based on the spectral characteristics of the
testing utterance and the training population. A formant-
based method, using the formant  ratio directly as the
warping factor, has been suggested [5,6]. However, the
method does not guarantee a better recognition rate for
difficult speakers [6].

Our experimental results show that for most utterances
there is a desired warping range within which the warped
utterance can be correctly recognized. Thus, the task can
be seen as finding a link function that maps a given
spectral feature, such as pitch or formant, to a factor within
the desired warping range. In this study, we choose the
pitch frequency as the spectral feature because it can be
more easily and reliably estimated than the formant. A
simple autocorrelation pitch detector [7] was used for
pitch estimation. As an example, Fig. 3(a) shows the
histograms for the upper and lower bounds of the desired
warping range by resampling for female utterances when
the models are trained by male utterances. Also shown in
the figure is the histogram of the pitch ratio R (the average
pitch frequency of the input utterance divided by the
average pitch frequency of the training population) for
female utterances. Fig. 3(b) shows the approximate
Gaussian distribution of those shown in Fig. 3(a). The
purpose of the link function is to map the pitch ratio
distribution to somewhere between the distributions of the
lower and upper bounds.

An appropriate link function must meet three conditions:
mapping the pitch ratio to the desired warping range,
keeping the warping direction suggested by the pitch ratio,
and being tolerable to error in pitch estimation. The link
function can be as simple as

Wt , 1 / Wb = (1+R) / 2;   L < Wt , 1 / Wb < U      (1)
or more complicated like
Wt , 1 / Wb = Rk ;   0 < k < 1 ; L < Wt , 1 / Wb < U   (2)

where L and U denote the lower and upper thresholds for
the estimated warping factor.
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Figure 3: (a) histograms and (b) distributions of the lower
and upper bounds of the desired warping range and the
pitch ratios for female utterances when the models are
trained by male utterances.

Table 2: Comparison of recognition rates for different link
functions and warping methods.

(a) acoustic models trained by male utterances
Resampling Filter scaling

(1+R)/2 R (1+R)/2 R 
Male 0.962 0.962 0.976 0.974
Female 0.744 0.73 0.784 0.786
Overall 0.853 0.846 0.88 0.88

(b) acoustic models trained by female utterances
Resampling Filter scaling

(1+R)/2 R (1+R)/2 R 
Male 0.848 0.844 0.864 0.864
Female 0.982 0.982 0.988 0.988
Overall 0.915 0.913 0.926 0.926

When the estimate exceeds the threshold, the threshold
value will be used as the warping factor. This is necessary
to avoid error in pitch estimation. Typically ±20% is a
reasonable warping range as seen from Fig. 1. The key
issue is to find the best combination of the link function
and the warping method. Table 2 compares the
recognition rates with various link functions and warping
methods. The thresholds for the experiment were set to be



20% toward the expected warping direction for the unseen
speakers while 5% in the opposite direction. The results
show that filter bank scaling is consistently better than
resampling for different populations. The difference
between two link functions, however, is very small. We
chose (1+R)/2 as the link function in our subsequent
experiment for its simplicity.

4.  COMPARISON OF PITCH-BASED AND
ML-BASED APPROACHES

To evaluate the proposed pitch-based estimation scheme,
we compared the recognition rates obtained using the
present approach with those by the ML and simplified ML
methods. The filter bank scaling method is used in the
experiment for spectrum warping. The results are shown
in Table 3 where the computational cost of each method
normalized with respect to the baseline is also given. All
three methods give a considerable gain in the overall
recognition rate over the baseline. The ML method yields
the best results with the highest computational cost. For
seen speakers, both ML-based methods give a better
recognition rate compared to the baseline, while the
results by the pitch-based method are lower than the
baseline. This is expected since some of warping factors
estimated by the pitch-based method are out of the
tolerable warping range of the models, thus creating a
large acoustic mismatch between the warped utterance and
the models. For unseen speakers, the results by the pitch-
based method are comparable to those by the ML method,
while the simplified ML method gives a lower recognition
rate. As discussed in previous section, the simplified ML
method uses the transcription of the unwarped utterance to
find the warping factor. Due to the significant acoustic
mismatch between the unseen speakers and the training
population, the transcription of the unwarped utterance
may be corrupted and the error affects consequently the
warping factor estimation.

Table 3: Comparison of recognition rates by pitch-based
and ML-based approaches for warping factor estimation.
The bottom row gives the computational cost of each
method.

(a) acoustic models trained by male utterances
Baseline Simplified ML Pitch ML

Male 0.998 1.0 0.976 1.0
Female 0.668 0.736 0.784 0.798
Overall 0.833 0.868 0.88 0.899
Cost 1.0 11.7 <1.1 51

(b) acoustic models trained by female utterances
Baseline Simplified ML Pitch ML

Male 0.746 0.798 0.864 0.868
Female 0.996 0.998 0.988 1.0
Overall 0.871 0.898 0.926 0.934
Cost 1.0 11.7 <1.1 51

The computational cost of each method normalized with
respect to the baseline is given in the last raw of the table.
The pitch-based method adds only a marginal cost for the
pitch estimation compared to the baseline system. It is
clear that the pitch-based method gives an overall
recognition rate comparable to those given by the ML-
based methods but at a significantly lower cost.

5.  CONCLUSION

In this paper, we have investigated the use of linear
spectrum warping for normalization of unseen speakers
during recognition. Two warping implementations have
been examined and the results show that spectrum warping
by filter bank scaling for seen speakers is better tolerated
by acoustic models trained from  unwarped utterances. A
pitch-based scheme for warping factor estimation has been
proposed. The method is shown to be cost-effective in
reducing the variability of unseen speakers. In particular,
the combination of filter bank scaling with the pitch-based
warping factor estimation reduces the error rate of isolated
Mandarin digit recognition by more than 30% for unseen
speakers at a minimum computational cost.
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