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ABSTRACT

In this paper, we consider the hidden Markov
model(HMM) parameter compensation in noisy envi-
ronments with multiple noise sources based on the vec-
tor Taylor series(VTS) approach. General formulations
for multiple environmental variables are derived and
systematic expectation-maximization(EM) solutions are
presented in maximum likelihood(ML) sense. It is as-
sumed that each noise source is independent and having
Gaussian distribution. To evaluate proposed method, we
conduct speaker independent isolated word recognition
experiments in various noisy environments. Experimen-
tal results show that proposed algorithm ahieves signif-
icant improvement. Especially, the proposed method is
consistently more effective than the parallel model com-
bination(PMC) based on log-normal approximation.

1 Introduction

Presently, problems with noise-robustness is one of most
important issues in speech recognition. Various methods
have been proposed, such as robust distance measures,
feature vector transformation and model parameter adap-
tation. Feature vector transformation using signal Gaus-
sian mixture achieve successful results in the log-spectral
and cepstral domains[1][2][3]. Also, model parame-
ter adaptation algorithms affected by speaker adaptation
schemes show more improved performance over feature
vector transformation. In time-varying noisy condition,
however, fast adaptation is required and use of suffi-
cient adaptation speech for adjusting all model parame-
ters is difficult, while most speaker adaptation schemes
use some quantity of adaptation data.

Moreno proposed the vector Taylor series(VTS) ap-
proach to formulate relation between clean and noisy
speech signals and analytically solve the noise-robust
speech processing in the feature vector transform

This work was partially supported by Samsung Advanced Institute
of Technology(SAIT).

domain[2]. He achieved significant improvement com-
pared with other methods. Using only 2 environmental
variables, i.e., additive noise and spectral tilt, the VTS
approach yields reliable performance. But, it was per-
formed in the log-spectral and assumed independence
between log-spectral elements for reduction of compu-
tational burden. Since many speech recognition systems
accept cepstral coefficients as a feature vector, compen-
sation in the log-spectral domain requires additional con-
dition such as log-normal approximation. To solve these
problems, we generalized the VTS algorithm and applied
it to cepstral domain in our previous work. We presented
an exact expectation-maximization(EM)solution of VTS
with noise statistics[4]. Also, we developed new model
parameter adaptation algorithm based on the VTS[5].

In this paper, we consider speech recognition in noisy
environments with multiple noise sources. General for-
mulations for multiple environmental variables are de-
rived and systematic EM solutions are presented in the
maximum likelihood(ML) sense. It is assumed that each
noise source is independent and having Gaussian distri-
bution.

2 Environment modeling

2.1 Modeling additive noise

Let us consider simple additive noise environment. Cor-
rupted speech signal (or feature vector) can be ex-
pressed as:

1

where is clean speech signal, and is parameter that
represents the effects of the additive noise. In general,
the generic function is nonlinear and defined by
the parameter domain. For example, if we assume that
all parameters are defined in the logarithmic domain, we
get

log exp exp 2

where denotes the log-spectral parameter.



In the cepstral domain,

log exp 1 exp 1 3

or
log exp 1 4

as Acero used in [1], where representing cepstral pa-
rameters, denoting discrete cosine transform(DCT)
matrix, and 1 being inverse DCT matrix. Also, the
right-hand side of eq. (2)-(4) represent contamination
procedure defined by parameter domain.

There is no closed form solution for mean and variance
of corrupted speech signal, , in eq. (2)-(4). To get exact
solution, numerical integration was performed in several
previous studies,but, it isn’t practical becauseof its heavy
computational burden.

2.2 Truncated VTS approximation

Moreno proposed the VTS approach by which nonlin-
ear comtamination function was approximated as trun-
cated vector Talyor series [2]. Let [ 1 2 ]
be a noisy cepstral feature vector 1 with dimension

. Assume that y is related to the clean fea-
ture [ 1 2 ] , and additive noise
[ 1 2 ] by
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in which 1, 2, , represent the contamination pro-
cedure under consideration. By expanding VTS around

0 0 and taking only upto the first-order terms, we
can approximate (5) such that

0 0 (6)

where
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In [4], detail procedure for environmental variable esti-
mation can be found when there exist noise statistics, and
also we developed a method to estimate not only additive
noise but also spectral tilt and additive noise variance
using the EM algorithm[5].

1for brevity, we drop the subscript .

2.3 Noisy environment of multiple noise
sources

Even though there are multiple noise sources, and each
source has its statistics, we can apply VTS approach. It
is assumed there are independent noise sources, and
each noise source is a Guassian. Also, we assume that we
know contamination procedure exactly. (Contamination
procedure is generally nonlinear and may be extremely
complex.)

Using truncated VTS, we can get following approxi-
mation

1

0
1
0 0 (8)

where denotes a noisy feature vector from th noise
source.

We assume that the probability density function(PDF)
of speech signal can be represented by a summation of
multivariate Gaussian distributions :

1
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where is the total number of mixture components and
represent given a priori probability, mean

and variance of -th Gaussian distribution, respectively.
To obtain re-estimation fomulars, consider an auxiliary

function given by

¯ log 1 2 ¯

where 1 2 , 1 , de-
notes the th noise vector sequence which is statisti-
cally independent of the clean feature vector sequence
and other noise vector sequences, and is the number
of noise sources. is a length of vector sequence, and

1 2 is a hidden sequence of mixture
components. Given ¯ , new parameter estimates, ˆ are
sought according to

ˆ arg max ¯

Assuming that each noise source is a Gaussian, we take
the gradient of ¯ with respect to , mean vector
of -th noise source. Equating the gradient to zero, we
can get re-estimation equation of th noise mean as
follows

ˆ
1 ¯ ¯ (10)

In a similar manner, we can also re-estimate -th noise
variance,

ˆ 1 ¯ ¯

ˆ ˆ (11)

More detail explanations are given in the Appendix.



2.4 HMM model parameter compensation

For model parameter compensation without adaptation
speech, we need to find

ˆ ˆ arg max

arg max (12)

where 1 2 3 is a word sequence em-
bedded in , is a model parameterset of cleanspeech.

and are jointly maximized by keeping fixed and
maximizing over , and the keeping fixed and mix-
imizing over iteratively.

After several steps similar to previous section, we get
the following equations.

ˆ
1 ¯ (13)

ˆ 1 ¯

ˆ ˆ (14)

where ¯ is the joint
likelihood of and the -th mixture component of the

-th state with ¯ producing the observation .
By approximation of truncated VTS given eq. (8), we

finally get following new hidden Markov model(HMM)
parameters,

1

1 (15)

1

(16)

where and are noisy mean and variance of
-th state, -th mixture, and , denote clean

speech mean and variance of -th state, -th mixture.

3 Experiments

3.1 Task and database

Performances of the proposed methods were evalu-
ated with speaker-independent isolated word recogni-
tion experiments. The vocabulary consists of 75 Korean
phonetically-ballanced words. 90 male speakers uttered
the words once to construct the database for training and
evaluation. Utterances from 60 speakers constructed the
training data and those from the other 30 speakers were
used for evaluation. Each utterance was digitized with a

sampling rate of 16kHz. A 18th-order mel-scaled log fil-
terbank energy vector was extracted for every frame of 10
ms. By applying DCT, a 13th-order cepstral coefficient
vector was derived for each frame and used for recogni-
tion. 32 phoneme models were used as the basic units
of recognition. Each unit was modeled by a three-state
continuous mixture HMM which is a simple left-to-right
model without skipping where each state has three mix-
ture components. 3 types of noise - Computer generated
white Gaussian noise, NOISEX92 car noise(VOLVO),
and NOISEX92 babble noise - were considered. Accord-
ing to various SNR, scaled noise samples were added to
speech signal in time-domain.

3.2 Experimental results

We compensated HMM parameters according to changes
of environments in these experiments. Any prior in-
formation was not used for on-line adaptation. To
use as a reference, we implemented well-known paral-
lel model combination(PMC) algorithm based on log-
normal approximation[6]. Since noise samples were
added to speech signal in time-domain, there was no ex-
plicit linear channel distortion in our experiments. But,
variablities between speakers could be considered a kind
of spectral tilt. Also, errors of assumed model could
make other distortions. Thus, we assumed noisy envi-
ronments with 2 noise sources, addtive noise and spectral
tilt as other works[1][2]. 2 sources were modeled as in-
dependent Gaussian, respectively. Initial noise model
parameters were obtained from short slience frames (3-4
frame) before beginning of speech.

When clean speech was applied, our system showed
93.4% recognition rate. Table 1. shows experimen-
tal result of speaker independent isolated word recogni-
tion in various noise environmetns. In all noisy condi-
tion, recognition performance of baseline system was
degraded seriously when no compensation scheme is
adopted. Especially additive white Gaussian(AWG)
noise and BABBLE noise degraded performance dras-
tically even at relatively high SNR(20dB). In all noisy
condition of various SNR, our proposed method outper-
formed the well-known PMC algorithm. Note that it was
effective to not only stationary noise (AWG, CAR) but
also nonstationary noise (BABBLE).

4 Conclusions

In this paper, we presented a novel method to compensate
HMM model parameters in noisy environments. Previ-
ous VTS algorithm was reviewed and extended to mul-
tiple noise source case. Environmental variables (mean
and variance of noise sources) were estimated using the
EM algorithm and detail procedure was presented for
compensation of HMM parameters. Developed method
did not use any prior information of noise source, and



Table 1: Experimental results of speaker independent
isolated word recognition in various noise conditions(%).

Noise Comp. SNR (dB)
type algo. 30 20 10 0

None 83.7 46.1 8.9 3.1
AWG PMC 91.1 85.2 71.3 38.3

Proposed 92.1 87.5 77.0 49.8
None 93.3 92.7 88.5 66.3

CAR PMC 92.6 92.5 91.4 88.2
Proposed 93.4 93.0 92.6 89.2

None 89.7 67.7 34.6 9.3
BABBLE PMC 89.3 82.2 62.7 27.5

Proposed 92.3 87.3 73.4 40.9

only need utterance to be recognized. To evaluate pro-
posed method, we performed speaker-independent iso-
lated word recognition experiments. Proposed method
outperformed well-known PMC algorithm at various
condition. Especially, it effectively compensated the
HMM parameters in the nonstationary BABBLE noise
environment as well as stationary condition.

Appendix

Assuming that each noise source is a Gaussian, and
taking the gradient of ¯ with respect to , mean
vector of th noise source, we can obtain following
formula.

1

¯

where 1 2 . Equating above equa-
tion to zero, and after several step we can get re-
estimation formula as follows

ˆ
1 ¯ ¯ (17)

in which

¯ ¯

˜ ¯ ˜ 1 ¯ ¯ ¯ ˜ 1 ˜

(18)

where

˜

0
1
0 0 (19)

˜ 1 (20)

and denote speech feature vector mean and vari-
ance of th mixture (codeword), respectively. In a simi-
lar manner, we can get new variance of th noise source.

ˆ 1 ¯ ¯ ˆ ˆ

where

¯

¯ ¯ ¯

¯ ¯ (21)

and

¯ ¯ ¯

¯ 1 ˜ 1 1 (22)
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