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ABSTRACT

This paper is concerned with the problem of Robust Speaker
Recognition. An acoustical mismatch between training and
testing conditions of hidden Markov model (HMM)-based
speaker recognition systems often causes a severe degradation
in the recognition performance. In telephone speaker
recognition, for example, undesirable signal components due
to ambient noise and channel distortion, as well as due to
different variations of telephone handsets render the
recognizer unusable for real-world applications. The purpose
of this paper is to present several compensation techniques to
decrease or to remove the mismatch between training and
testing environment conditions. Some of the techniques
described here have already been successfully applied in
Robust Speech Recognition, and our preliminary results show
that they are also very encouraging for Speaker Recognition.

1. INTRODUCTION

It is well known that Automatic Speaker and Speech
Recognition systems trained in one environment often
perform poorly in new environments due to mismatches
between training and testing conditions. This is
particularly true for Hidden Markov Models (HMM)
recognizers. The mismatches could be due to different
transducers, transmission channels, changing speaking
styles and accents, the presence of varying ambient and
channel noise, etc. The goal of robust speaker
recognition is to remove the effect of this mismatch so
as to bring the recognition performance as close as
possible to that of the matched conditions.

Consider the situation of a speech signal transmitted
over a telephone network where the distortion effect is
assumed to be linear either in the spectral domain or in
the cepstral domain. These effects constitute an additive
component, N, which is representative of the ambient
noise, and a multiplicative component, H, due to the
filtering effect of the channel. This is simply expressed
as:
Y =H[X+N]
where X is the original clean speech, H is the channel
response and Y is the received signal. In the log domain
log Y =logH+1log[X +N]

Then the channel influence on the speech leads to an
additive component on the cepstrum of the speech. That

is, in the cepstral domain the relation can be expressed
as:

¢,[k]=¢,[k]+e,[K]
where ¢y[k] denotes the kth cepstral coefficient of Y,
cu[k] denotes the kth cepstral coefficient of H, and ¢,,[k]
is the kth cepstral coefficient of (X+N).
Thus the mismatch between the training and testing
conditions can be represented as a linear transform in
the cepstral domain:

c'=Axc+b,

where ¢' represents the cepstral vector of the distorted
signal, ¢ the cepstral vector of the original signal, the
matrix A and vector b model the transformation.

Long-term Cepstral Mean Subtraction (CMS) can be
considered as a classical technique for reducing the
channel influence both in speech and speaker
recognition. Following the prior formulation, it assumes
A as the identity matrix and estimates b. Recently,
several maximum likelihood (ML) techniques for
estimating the above transformation have been
introduced to deal with the problem of robust speech
recognition. Among them we can mention the
techniques described in [1] and [2] as effective ways for
handling the mismatch.

The purpose of this paper is to evaluate the performance
of these techniques when applied to a speaker
recognition system and compared them with CMS.

The remainder of the paper is organized as follows.
Next, we describe our baseline speaker recognition
system as well as the signal analysis and the database
that we will use for the experiments. Section 3 describes
the two stochastic methods for signal bias removal we
have explored. In Section 4, experimental results and
comparative  performance among the different
techniques are shown. A summary and conclusions are
given in section 5.

2. BASELINE ERGODIC HMM
RECOGNIZER SYSTEM

The baseline recognition system that we have used to
explore the performance of the implemented techniques
can be described as follow.
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Speakers are represented by an ergodic four-state
continuous density and multiple-Gaussian HMM trained
by using an acoustic discriminative procedure [3].
Briefly, this training procedure consists of two stages:
first, training frames are a priori segmented into four
categories: voiced, unvoiced, transitions, and non-
speech frames by means of a phonetic classifier. Then,
all frames assigned to a particular category contribute to
the estimation of the mixture Gaussian parameters of a
particular state. Variances are tied across the mixtures
due to the scarcity of training data. Second, transition
probabilities are estimated holding fixed means and
variances of the Gaussian mixtures.

In all experiments a database from 20 Spanish speakers
(10 males and 10 females) recorded over the telephone
network has been used. Each speaker provided five
sessions collected over a period of about one month. The
speakers were encouraged to use different handsets and
telephone lines. Each session consists of four repetitions
of the speaker Spanish Identity Card. One session is
used for training and the remainder four sessions for
testing. Training session is rotated across the available
sessions in order to maximize the number of testing
tokens. In this way, we achieve 1600 testing utterances
and five assessment sets.

The speech input is sampled at 8 KHz. Then, a mel-
scaled cepstral analysis is performed each 10 ms time
interval with a 20 ms Hamming window. For each
frame we extract a 18 element feature vector, which
consists of 8 mel-scaled cepstral coefficients, 8 delta-
cepstrum coefficients, the normalized log energy, and
the delta normalized log energy.

3. STOCHASTIC MATCHING (SM)
TECHNIQUES

We have tried three different techniques for handling
the mismatch between training and testing conditions:
long-term Cepstral mean subtraction (CMS) [4], Signal
Bias Removal (SBR) by ML estimation as described in
[1], we will call it Stochastic Method 1 (SM1) and the
ML Stochastic Matching described in [2] that we will
refer to as SM2.

3.1 CMS
CMS is a very simple method that subtracts from each
frame of the observed utterance the average cepstrum
over the entire utterance

¢'=c—E[c]
where the expectation, E[c], is approximated by time
average.
It regards the average of speech cepstra as the channel
multiplicative distortion, and has been proposed and
applied as a simple and powerful adaptation technique
to telephone speech recognition systems in that training

is done on one channel condition while testing is done
on another channel condition. CMS performance can be
considered as the reference objective for any novel
technique.

3.2 SM1

This method was originally applied to robust speech
recognition by Rahim and Juang [1]. It is carried out as
an independent process following feature analysis and
proceeding with a HMM recognition, and has been
integrated as part of a discrete density HMM recognition
system. Thus, the approach use a vector quantization
(VQ) codebook based model to estimate the bias
process. As we have mentioned in section 2 our baseline
recognition system uses a continuous density HMM
architecture, then in order to apply this technique to our
system, we compute the SBR VQ and store it separately
from the model.

We have assumed a simple additive bias term b and the
estimation is accomplished in the training phase by the
following iterative procedure.

Given a set of centroids L,

1. We compute an estimation of the bias b for each

utterance as
1 T
b= ?Zﬂy, -z,

where z, is the nearest neighbor to the distorted
signal y,
z, =argmind(y,, i,)
After that b is subtracted from the signal
x',=y,—b t=1,....T
This procedure is iterated several times, using x’
rather y;, to reduce the bias and to obtain a
maximization of the likelihood function.
2. We generate a new set of centroids with the
processed data x’;.
The above procedure (steps 1 and 2) is repeated with the
new improved set of centroids until the likelihood
reaches a fixed point.
During the recognition phase only the step 1 is
implemented.
We can see that there is a strong relationship between
SM1 and CMS. The key issue of this method is the VQ
required to compute the bias estimation.

t

3.3 SM2

It is also a maximum likelihood (ML) approach to
decrease the acoustic mismatch between a test utterance
and a given set of HMM's. This mismatch can be
reduced in two domains: in the observation space
mapping the observed utterance Y into an utterance X
which matches better with the models, and in the model
space mapping the original models to a transformed
models that matched better with the observed utterance
Y. The parameters of the functions that implement these



mappings are estimated using the expectation-
maximization (EM) algorithm.
The algorithm works only on the given test data and the
given set of speaker models, and no additional training
data is required for the estimation of the mismatch prior
to actual testing. The bias can be modeled as either a
fixed bias or a state-dependent bias. In some situations a
state-dependent bias is meaningful. As an example, an
additive cepstral bias model for linear filtering is only
valid for high signal to noise ratios (SNR's). When the
SNR is low, the noise dominates, and the additive model
for channel filtering is inaccurate. It is possible to
estimate a separate bias for speech and non-speech
segments. Recalling the architecture of our HMM's (it
considers different states for different kinds of speech
segments), a very simple way to deal with separate bias
for each kind of sound is to use the approach that
considers a state-dependent bias.

The iterative estimation procedure is based in the

following two steps:

1. We first find the most likely state sequence using the
Viterbi algorithm.

2. Then we find the bias to maximize the likelihood of
the utterance Y conditioned on this state sequence
using the EM algorithm.

It is important to note that the recognition hypothesis

guides the algorithm and, hence, a very poor hypothesis

can result in suboptimal performance. For a detailed
description of the formulation of this approach in both,

the observation space and the model space see [2].

In the observation space we obtain the new utterance as

x,=y,—b

In the model domain we assume that the statistical

model for the bias is a single Gaussian density with

diagonal covariance matrix. Thus, the structure of the
new model remains the same as that of the given model.

Means and variances of the new model are derived as

follows

t

H,=u, +u,
c.=0.+0,
» =0

where 1, and G°, are the parameters of the bias model.
4, EXPERIMENTAL RESULTS

Closed-set identification experiments were conducted.
The goal of the experiments was to examine the efficacy
of the above approaches in improving the performance
of the baseline recognition system in the presence of
mismatch due to different transducers and channels.

We first carried out baseline experiments to study the
effect of the HMM topology. The overall system
performance strongly relies on the total number of
Gaussian mixtures and so it does the computational
complexity. Figure 1 shows how gracefully the
performance of the baseline speaker recognition system,
plotted with solid line, increases with the number of

mixtures per state in a speaker identification
experiment. It also shows the performance when CMS is
applied. In all cases, performance improves. For
example, we notice an improvement by 33% compared
with the 4-mixtures baseline system.

As we said before, performance of SMI1 techniques
depends on the size and design procedure of the
required VQ. We have tried two approaches for VQ
design, always using the Generalized Lloyd Algorithm
(GLA) to obtain the centroids. In the first approach a
VQ is built up using training data from all speakers.
This VQ is used both for training and testing. In the
second approach, a VQ for each speaker is individually
computed and used for training the corresponding
HMM. In testing, a generic VQ formed by
concatenation of the individuals VQ's is used. In both
approaches three or four iterations are enough for the
algorithm to converge. The performance of the first and
second approaches are also shown in Figure 1 denoted
as SM1-1 and SM1-2 respectively. In this example a VQ
of 120 centroids has been used in the first approach. In
the second a VQ of 4 centroids for each speaker plus a
VQ of 6 centroids for the noise what makes a generic
VQ in testing of 86 centroids. We can observe as the
second approach has a better performance than the first
one. It also slightly outperforms the CMS technique.
These results were obtained using one of the five
sessions as the training data and the others as test data
and then rotating the order of them to came up with five
assessment sets. We report the averages of the five
assessments.

In the case of a speaker verification experiment the
generic VQ is not required. Our preliminary results in
this direction are also shown in Figure 1 (SM1-3). In
this experiment each speaker VQ consists of 8 centroids.
We see how big the improvement is.

As we said in section 3.3 the SM2 technique operates
entirely on the test utterance and the speaker HMMs. In
our experiments we have considered the two
approaches: a single bias vector for the whole utterance
and different bias vectors for different states of the
HMM. These two approaches have been implemented
both in the feature and model space. The bias
parameters were estimated on a per-utterance basis. In
the feature space the bias vector was initialized to zero.
In the model space, the mean of the bias was initialized
to zero, whereas the variance was initialized to a small
positive number.

We first conducted an experiment in a hypothetical
situation in which we suppose known the identity of the
speaker. This allows to choose the model that we will
use to estimate the bias. After removing the bias the
identification is carried out using all speaker models.
We can see this procedure as a mixture between
verification and identification tasks. The Figure 2 shows
the results for different HMMs topologies and



approaches to estimate the bias. The results correspond

to train with a session and to recognize with the other

four sessions. It can be observed that both a feature-
space single bias (FS-1) and a state-dependent bias (FS-

2) outperform the CMS technique. Furthermore, FS-2 is

superior to FS-1 in this experiment.

In order to implement the technique on a identification

speaker task we need to specify the model or models

used to find the most likely state sequence. To handle
with this problem we have explored three possible
alternatives:

1. Given a test utterance the set of all the HMMs in the
speaker population is used to segment it and to
estimate the bias process (SOL1).

2. First, we find the speaker HMM that best matches
the utterance. Second, we use his/her HMM and a
set of close cohorts HMMs to compute the bias as in
1. (SOL2).

3. We estimate as many possible bias process as
speakers are enrolled in the system. That is, for each
speaker model, first we estimate the bias using the
corresponding speaker model, second, we remove
the bias and third we compute the likelihood of the
utterance supposed it belongs to this speaker.. Thus,
we obtain as many likelihood values as speakers
enrolled in the system. Finally, the utterance will be
identified as belonging to the speaker model that
obtained the maximum likelihood. (SOL3).

In Table 1 some relevant results from these approaches
are shown. These results are for a HMM architecture
with 4 and 8 Gaussian mixtures per state (first and
second row respectively). Also two different approaches
for the bias are considered: 1) a single bias vector is
estimated for the entire utterance (FS-1); and 2) a
separate state-dependent vector is estimated (FS-2). As
a reference, we also give both the baseline system
performance (Base) and the CMS performance. The
results show that these techniques significantly reduce
the error rate compared with the baseline system, but
they do not improve the CMS performance. Among
them SOL3 seems to be the most effective technique.

5. SUMMARY AND CONCLUSIONS

We have presented our experiments with two stochastic
techniques to increase performance in a robust speaker
identification task by dealing with the mismatch
between training and testing conditions. They have
proved to be effective and, in some case, show better
improvement when compared with CMS.

Regarding complexity, CMS is a fast and efficient
technique. It is simpler and faster than the SM
techniques proposed, since it requires only a small
amount of computation in the front-end of the system.
By the contrary the SM proposed techniques are based
in iterative algorithms, what makes these methods heavy
from the point of view of computational burden.

We believe that further improvement can be achieved in
a verification task as our preliminary results show. This
will be the next step to be conducted. Also we are
studying the option of estimating a separate bias vector
for speech and silence frames.
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Figure 1. Speaker error rate with the method SM1
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Figure 2. Speaker error rate with the method SM2

Table 1. Speaker error rate with SM2 for 4 and 8 mixtures

BASE || CMS SOL1 SOL2 SOL3

FS1 FS2 FS1 FS2 FS1 FS2

12.2 8.1 10.9 11.6 || 11.56 | 11.6 9.4 8.7

11.6 8.1 8.8 10.0 || 9.37 10.9 8.3 7.5

6. REFERENCES

[1] M.G. Rahim and B.-H. Juang.; “Signal bias removal by
maximum likelihood estimation for robust telephone speech
recognition.”; IEEE Trans. on ASP, 1(4):19-30, January 1996.
[2] A. Sankar and C.-H. Lee.; “A Maximum-Likelihood
Approach to Stochastic Matching for Robust Speech
Recognition.”; IEEE Trans. on ASP, Vol. 4, No. 3, pages 190-
202, May 1996.

[3] L. Rodriguez-Lifiares and C. Garcia-Mateo; “On the use of
acoustic segmentation in speaker identification.”; In
Eurospeech 97, Greece. September 1997.

[4] A.E. Rosenberg, C.H. Lee, F.K. Soong, “Cepstral Channel
Normalization Techniques for HMM Based Speaker
Verification”, Proc. ICSLP’94, pp. 1835-1838, Yokohama
(Japan), 1994.




