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The determination of the precise moment in which
speech begins or ends is an important problem in ASR.
As showed in [1], small separations from the optimum
beginning and ending point, imply a great decrease in
the recognition accuracy. The presence of noise [2] [3],
specially when its level is high (around 95 dB as in the
case of this work), and its characteristics are highly non-
stationary, is an added problem, since it can produce
false shots (more probable when the noise includes
speech sounds). That is the reason why in such
conditions, it is important to have a pre-processing stage
that removes as much noise as is possible, and that gives
some clues that help to build an end-point detector for
those environments.
The method here presented offers a pre-processing
technique for highly noisy and non stationary
environments, which at the same time that enhances the
speech, gives an equalised version of the SNR
improvement (Mean Spectral Energy Difference),
whose main characteristic is that large differences in the
level of noise are changed to a little ripple, while the
presence of speech is distinguished by a large decrease
in this Mean Spectral Energy Difference. Following this
technique, any End-point Detection approach (explicit,
implicit or hybrid [3]) may render acceptable results.
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This paper is intended to describe a practical application
of certain Signal Processing Techniques used for End-
Point Detection in Highly Non-Stationary
Environments. These are characterised by high noise
levels (of about 100 dB) and are specially harsh to deal
with, as many different noise sources may be active at a
time, varying dramatically with time, and are a paradigm
for many similar cases (conference rooms, discotheques,
automotive cabinets, industrial environments, etc.). One
of the main problems posed by Isolated-Word Speech
Recognition in these cases is found in the difficulty to
establish reliable end points for the fragmentation of
speech [2] [3]. The techniques used are based in two-
microphone cancelling schemes with Adaptive

Algorithms [4] [5] [6]. The General Framework is
shown in Fig. 1. The recording scheme is based on a
two-microphone structure, one for Noisy Speech
(Primary), and the other for the Noise in itself
(Reference). Assuming that the Speech Source is well

separated from the Reference Microphone, the Noise is
estimated by a ODWWLFH�ILOWHU, and its EDFNZDUG UHVLGXDOV
are used to adapt the weights of a ODGGHU� ILOWHU, in
combination with the (VWLPDWLRQ� RI� 1RLVH generated
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)LJXUH��� General Framework for the proposed methodology. A classical
Adaptive Noise Cancellation Scheme (a combination of an DGDSWLYH�ODWWLFH
DQG� ODGGHU� ILOWHUV), Spectral Estimation of the Noisy and Clean Speech,
and power estimation in the time domain for the detection of Speech and
Speechless frames are being dynamically combined.
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adaptively in this last filter, which generates Clean
Speech as its output. The strategies classically used to
combine the different estimators of Noise, and the
EDFNZDUG�UHVLGXDOV, different algorithms may be used to
update the weights of the ODGGHU�ILOWHU. These give place
to different implementations of the basic cancelling
scheme. The algorithms studied have shown a good
behaviour under hard work conditions: highly noisy and
non stationary environments, no D�SULRUL knowledge of
the characteristics of the signal or the noise, the need to
preserve the quality of speech, and of immediate
response, possible further processing of speech, etc.

��0(7+2'2/2*<�2)�7+(�3529(6

The speech traces used to produce the results shown
were recorded with a two-microphone scheme as
mentioned. A pair of high-quality cardioid microphones
and a pre-amplifier were used to feed two channels to a
JHQHUDO� SXUSRVH� VSHHFK� UHFRUGLQJ� FDUG. Noise was
reproduced at laboratory conditions from real
recordings taken in a real scenario. The level of the
noise was set to 95 dB, and the SNR about 0 dB. The
resulting traces were stored and batch-processed in a
JHQHUDO�SXUSRVH�ZRUNVWDWLRQ, using a C-C++ version of
the above mentioned algorithms embedded in a User
Interface to allow the audio and visual inspection of the
recorded traces and the corresponding results. The
microphones were placed at a distance of 20 cm., and
the filter dimensions ranged correspondingly to 7+7
delay and processing stages for a sampling rate of
11025 Hz.

Once clean speech is obtained using adaptive
cancellation techniques, an estimation of its Power
Spectrum is generated and averaged, and then
subtracted from the mean Power Spectrum of the Noisy
Speech. The resulting values are smoothed in a special
averaging filter, and an estimation of the 0HDQ�6SHFWUDO
(QHUJ\� 'LIIHUHQFH between the noisy and cleaned
speech is obtained. This representation is specially

useful to detect the presence of speech in noise for (QG�
3RLQW�'HWHFWLRQ. The 0HDQ�6SHFWUXP�(QHUJ\�'LIIHUHQFH
between the Noisy Speech trace and the Reference
Noise trace is evaluated using 256-sample FFT frames
(with an overlap of 128 samples), averaging the energy
over the whole spectrum for each frame, and smoothing
the results in the time domain with an order-5 moving
average smoothing filter over the frame set. The 0HDQ
6SHFWUXP� (QHUJ\ for the Noisy Speech (upper trace)
and the Cleaned Speech (lower trace) may be seen in
Fig. 2.a.

In Fig. 2.b the 0HDQ� 6SHFWUXP� (QHUJ\� 'LIIHUHQFH is
presented. In this trace the presence of speech is clearly
enhanced, as the average energy level is around 10-12
dB (the amount of noise cancelled), except in the
fragments where the most part of the contribution to the
energy of the Noisy Speech is due to speech in itself. By
direct inspection of figures 2.a and 2.b, we can notice
that variations higher than 10 dB in the level of noise of
the Mean Spectrum Energy of  the speech produce a
little ripple in the Mean Spectrum Energy Difference.
The fragments of speech can be easily pointed out from
the sudden and large decays in the Mean Spectrum
Energy Difference (frames 163-217,  325-379, 487-541,
649-703, 685-919 and 973-1081), as seen in Fig. 2.b.
Using the lower trace (cleaned speech) for the detection
of beginnings and endings would require detection of
the deviations in the energy from the baseline, which
should require further processing (for example, an
average filtering). If the trace in Fig. 2.b is used instead,
this detection may be carried out using an absolute
reference for thresholding from the more stable baseline
(topline, to be more precise). This result is specially
important in environments where the noise level is
continuously changing, making it quite difficult to take
an D�SULRUL decision of the location of speech fragments.
This pre-processing technique can be used for helping
End-point Detection, with independence of the final
approach decided (explicit, implicit or hybrid [3]).
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�)LJXUH� ��D Spectral Energy corresponding to Noisy Speech (upper trace) and Cleaned Speech (lower trace. The
improvement does no sustain for energy peaks in which speech is not present (see specially those in the leftmost part of
the figure).
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�)LJXUH� ��� E. Mean Spectral Energy Difference between both traces in Fig 2.a. A Difference of 10-12 dB may be
measured between both traces, which reduces when Speech is dominant over noise to almost zero. This trace may be used
for End-Point Detection.

Once the Mean Spectral Energy is obtained, the mean
level of the rippling (non-speech periods) is obtained to
calculate a threshold. Decreases of the mean spectral
Energy deep enough below that threshold, an with a
sufficient duration are considered speech.

A time domain estimation of the energy of the signal is
also evaluated, since some words ending with plosives
are not well detected. The pressure wave generated can
be easily detected in the time domain.

With both the spectral and the temporal information, the
endpoints are determined.

��5(68/76

Several utterances of the words “left”, “right”, “up”,
“down”, “go”, “stop” were recorded with a two-
microphone scheme. The endpoints of the filtered signal
were first determined by inspection, and the results were
compared against the endpoints detected using this
scheme.

For such the smoothing filter was evaluated with 3 and 5
points windows.

The results are presented in frames. This frames have a
length of 256 points (23.22 ms) and have an overlap of
128 points (11.61 ms). So an error of one frame in the
determination of the beginning or ending point
represents an error of 11.61 ms.

As the FFT frames are overlapped, the beginning and
ending points of the words are present in two frames
(frames 0 and –1 for the beginning, and 0 and +1 for the
ending point), so both 0 and –1 frames for the beginning
and 0 and +1 for the ending are correct.

It is better to estimate in advance the beginning of the
real word inset rather than after it takes place (therefore,
negative values for the frame are preferable than
positive ones). For ending points the estimation is the
opposite. It is better to produce late detects than
anticipate ones, so the smoothing filter with a window of
5 points shows the better behaviour.

The importance of the time domain power estimator is
also clear, as it improves the results. (This especially in
the determination of the ending of /stop/, /left/ and  /up/)
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��D Number of beginning-points detected as a function
of the frame index for 10 utterances of the 6 mentioned
words. A 3-point smoothing window was used
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��E Number of beginning-points detected as a function
of the frame index for 10 utterances of the 6 mentioned
words. A 5-point smoothing window was used
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��F Number of ending-points detected without time-
domain power estimation. (3-point smoothing window).
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��H Number of ending-points detected with time-domain
power estimation. (3-point smoothing window).
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��G Number of ending-points detected without time-
domain power estimation. (5-point smoothing window).
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��I Number of ending-points detected with time-domain
power estimation. (5-point smoothing window).

)LJXUH�� Beginning and ending point detection deviations for 10 utterances of the words /left/, /right/, /up/, /down/, /go/,
/stop/. Note that great errors in the detection of ending points (detections 7 to 13 frames before it really takes place -70 to
140 ms.-, corresponding to plosive endings) are solved if time domain power estimation is made.
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