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Abstract

A novel Voice Activity Detector is presented that is
based on Source Separation techniques applied to sin-
gle sensor signals. It o�ers very accurate estimation
of the endpoints in very low Signal to Noise ratio
conditions, while maintaining low complexity. Since
the procedure is totally iterative, it is suitable for
use in real-time applications and is capable of op-
erating in dynamically adapting situations. Results
are presented for both White Gaussian and Car En-
gine background noise. The performance of the new
technique is compared with that of the GSM Voice
Activity Detector.

1. Introduction

Voice Activity Detection (VAD) is important in many
areas of speech processing technology, such as noise
reduction, voice recognition, speech coding etc, and
has been extensively studied ([7], [5], [1]). Most of
the existing techniques focus on relatively mild noise
conditions (small positive SNR, for example the con-
ditions found in an o�ce environment). The work
presented in this paper focuses on much more ad-
verse conditions, with SNR's in the range of -5 to
-10 dB, with particular attention paid to the case of
car noise. The VAD is based on a recently presented
noise reduction technique [2], [3]. The optimisation
procedure is totally iterative and therefore suitable
for use in real-time, dynamically adapting situations.
This paper reviews the Single Sensor Source Separa-
tion (SSSS) noise reduction technique, applies it to
VAD and presents the results. The performance of
the new technique is compared with that of the Voice
Activity Detector for the GSM standard [9].

2. Single Sensor Source Separation

(SSSS)

The problem of Independent Source Separation has
recently attracted considerable attention (see e.g [6]).
A Signal Enhancement technique based on separat-
ing the signals from a single sensor has recently been
presented in [2] and [3]. The signal received from just
one sensor is passed through �lters that model the
distortions normally undergone in the channel. This

is followed by an optimisation procedure which is im-
plemented via a Lagrange Programming Neural Net-
work (LPNN, see [8]). The setup is shown in Figure
1.
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Figure 1: Single Sensor Source Separation Block Di-
agram

The input �lters were chosen to be:

H1 = � + z�1 + �z�2

and
H2 = �� + z�1 � �z�2

with � typically 0.5.
The LPNN allows constraints to be imposed which

substitute, in part, information normally obtained
from a second sensor. With reference to the signals
shown in Figure 1, the objective function to be min-

imised is: J =
P
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constraint that s1 + s2 = y where y is the received
signal. This gives the following Lagrange function to
be minimised:
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A full account of this technique can be found in [2]
and [3].

The error signal of the LPNN, calculated as
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; is of particular interest

to this work. When the input signals remain sta-
tionary, � will remain at a constant value. When
the input signal statistics change, � will suddenly in-
crease and then drop back down to its new equilib-
rium point. Unbiased estimates �̂ of � are produced

using: �̂n = (1��)�̂n�1+�
P
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parameter � controls the speed at which the algo-
rithm will reconverge after the statistics of the inputs
have changed.



3. Application to Voice Activity

Detection

For the purposes of the VAD, the parameter � used
in the calculation of �̂ is chosen to be relatively small
(typically 0.9) so that the response to changes is rela-
tively swift. The setup used is shown in Figure 2. The
error signal is �rst smoothed. The adaptive thresh-
old is then calculated and continuously updated to
account for changes in the background noise statis-
tics. During silence the threshold Tn is updated as

Tn+1 = (1� �)Tn + �fn;

where fn is the smoothed error signal. During speech

Tn+1 = (1� )Tn + fn;

with  << � (typically �


= 100) so that the algo-

rithm does not start to track speech. The decision
changes from silence to speech when the signal f ex-
ceeds �0 � Tn and conversely, from speech to silence
when f falls below �1 � Tn (typically �0 = 1 and
�1 = 1:4). As an additional heuristic, the threshold
is not allowed to go below 2 � 10�6. The complexity
of the overall VAD algorithm is of the order of 50
operations per sample.
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Figure 2: SSSS based Voice Activity Detector Block
Diagram

Stability considerations for the overall sytem can
be found in [4]. The method is found to be stable, pro-
vided the power of the input signal is below a certain
level determined by the choice of the various parame-
ters of the system, such as the input �lter coe�cients,
, � etc. For the values shown above the bound ob-
tained is 0.2. In practice this is found to be tight, and
the input power can be higher.

4. Results

Tests were carried out using the phonetically labeled
TIMIT ([10]) database and both white and car noise.
White noise is the worst case because the SSSS al-
gorithm performs worst in wideband noise. Results
are given in the form of example segmented phrases
and as statistics of the error in the determination of
the endpoints, calculated from 1600 tests. All tests
were carried out at approximately �8dB SNR, and
the results of the tests are given in Figures 3, 4 and
7.

The speech waveform shown in the examples is
fromamale speaker and the sentence \Coconut cream
pie makes a nice desert".
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Figure 3: (a)Speech Contaminated with Car Noise at
-8dB and (b) original, clean speech and VAD decision.

Experience showed that the GSM VAD [9] com-
pletely failed to identify any silence periods for exper-
iments where the SNR was below 10dB (the TIMIT
database was again used). For this reason, experi-
ments were performed for both techniques at 20 dB
SNR. Results are once more given both as example
segmented phrases of male speech and as statistics of
the error. The speech waveform shown, is the same
as before. Figure 6 shows the error distribution ob-
tained for the new method at 20dB over 1600 speech
�les of the timit database. Figure 8 shows the er-
ror distribution obtained for the GSM VAD, with the
same data and for the same noise conditions.

At 20 dB SNR,the GSM VAD classi�es the whole
sentence as speech whereas the SSSS VAD is able
to segment the sentence into segments of speech and
pauses. This shows the SSSS VAD to be a promising
method for use in, for example, methods of noise re-
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Figure 4: (a)Speech Contaminated with White Gaus-
sian Noise at -8dB and (b) original, clean speech and
VAD decision.

duction based on spectral subtraction which require
noise model estimates to be updated in speech pauses.
Some speech activity is falsely classi�ed as silence
in this example but tuning of the parameters of the
method can be used to avoid this. At -8 dB SNR,
the SSSS method gives results practically identical to
those obtained at 20 dB SNR for car noise. For white
gaussian noise (which is the worst case of the SSSS
method) at -8 dB SNR, the results are not as good as
those obtained at 20 dB, but a meaningful and useful
segmentation is still obtained.

5. Conclusions

A new VAD is presented based on the Single Sen-
sor Source Separation signal enhancement technique.
The performance of the new method was shown to be
superior to the one obtained from the GSM VAD and
much more robust in the presence of extremely high
noise levels. The algorithm is of very low computa-

tional complexity, and does not contain any division
operations and is therefore suitable in this respect for
practical realisations.

We would like to thank our collegue, Mr D.M.
Brookes for supplying the implementationof the GSM
VAD used in these tests.
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Figure 5: VAD decision made at 20 dB (Gaussian
Noise)plotted over the original speech signal (a) GSM
VAD and (b) SSSS VAD.
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Figure 6: SSSS VAD: Probability distribution of the
error (in seconds), computed over 1600 sentences from
the timit database (SNR = 20dB, White Gaussian
Noise).
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Figure 7: SSSS VAD: Probability distribution of the
error (in seconds), computed over 1600 sentences from
the timit database (SNR = -8dB, White Gaussian
Noise).
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Figure 8: GSM VAD: Probability distribution of the
error (in seconds), computed over 1600 sentences from
the timit database (SNR = 20dB, White Gaussian
Noise).


