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ABSTRACT

We present a new adaptive method for online noise esti-
mation which extends the model combination approach
to slowly varying noise conditions. The technique of
model combination is reported to improve accuracy in
speech recognition without extensive training of noisy
speech data. Only training of noise characteristics
is needed. However, if the noise characteristics vary
over time, calculation of noise parameters once before
recognition is not suitable. Therefore the new method
of online estimation allows an adaptation to the current
noise situation. Furthermore cepstral mean subtraction
is added to the model combination scheme. This removes
convolutional noise as well. Finally, it is shown how
linear discriminant analysis eases handling of dynamical
e�ects for model combination.

1. INTRODUCTION

With the increasing range of applications, automatic
speech recognizers are required that dynamically adapt
to the environment in which they are used. For exam-
ple new applications are possible for systems installed in
cars. Functions like speech controlled dialing for cellular
phones are very useful to reduce the distraction of the
driver. Furthermore, speech recognizing systems in cars
may be extended to control other parts of the vehicle such
as a navigation system, windows, etc.
To perform these tasks the speech recognizer should be
able to cope with the e�ects of a dynamic environment. If
the system has been trained with speech samples recorded
in quiet surroundings it performs worse in a car than in
an environment that more closely resembles training con-
ditions. This is due to varying noises caused e.g. by motor
or ventilation. A possible solution to this problem is to
perform training in di�erent noise conditions to cope with
the mismatch of training and testing environments. How-
ever, this signi�cantly increases training time and the rec-
ognizer is adjusted only to those noise situations that are
included in training. Another method to deal with noisy
speech is trying to remove the distortion during prepro-
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cessing. This can be done with the well known technique
of spectral subtraction for example [1]. Another possibil-
ity is to train speech and noise separately and add them
during the recognition process using model combination
[3]. This technique has been shown to increase recognition
capabilities in noisy environments with training limited to
clean speech data and a suitable noise model [11, 8]. In
case of varying noises training of di�erent kinds of noises
and choosing a suitable noise model during the recogni-
tion process is necessary. Here the problem arises that it
is not possible to get noise samples for every possible situ-
ation and even if we could do this, there exists the need to
classify the noise to one of the trained noise classes. Addi-
tionally, to calculate the appropriate combination weights
for speech and noise, an estimation of the SNR is needed.
To overcome these problems, an approach to perform an
online estimation of the noise characteristics is presented.
Secondly we show how to use linear discriminant analysis
(LDA) with the model combination technique to obtain a
dimensionality{reduced codebook that includes all of the
dynamic e�ects (like � and �� features). Finally, the
implementation of cepstral mean subtraction to be used
with the adaptive model combination is described.

2. ADAPTIVE MODEL

COMBINATION

The theory of model combination is explained in [3]. The
basic idea is to transform means and covariances of each
codebook class and the characteristics of noise from the
cepstral to the linear spectral domain. After that mean
vectors and covariance matrices of speech and noise are
added. Then a transformation of the combined means and
covariances back to the cepstral domain is carried out.
The following steps are necessary: First the transforma-
tion of mean vectors � and covariance matrices � from
the cepstral domain to the logarithm domain is done using
the inverse cosine transformation matrix C�1.
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The superscripts denote the domain of means and vari-
ances. Now piecewise calculation of the linear elements is
carried out.
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Figure 1: Model combination scheme using LDA{codebook and online noise estimation
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The characteristics of noise and speech can now be added
using a weighting factor g that depends on the signal to
noise ratio (SNR).
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After combination the retransformation to the logarithm
domain has to be performed.
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Finally, we get back to the cepstral domain by applying
the cosine transformation.
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After these calculations we obtain a codebook that is
adapted to the noise parameters under the assumption
of the noise being additive in the linear domain.
Instead of training of certain noise characteristics before
the recognition process, as it is done in previous work
[3, 11], we apply an adaptive method to maintain a 
ex-
ible system. To estimate noise parameters we use non{
speech frames of the input data in the cepstral domain.
For this purpose only frames in a small interval around
the energy minima of each phrase are considered. Each
time before model combination is carried out, mean and
covariance of these noise frames are calculated. This can
be done between consecutive utterances. After collecting
a certain number of frames, the adjustment to variations
of noise characteristics is done. Thus, depending on the
actual situation the noise characteristics to be combined
are estimated from non{speech segments, successively up-
dated and added to the speech codebook.

3. LDA{TRANSFORMATION

Recently, experiments with combination of noise and
speech for static, dynamic and velocity features have been

done. Using time derivatives resulted in a further reduc-
tion of error rate [4]. Contrary to this article we propose
a method that is a straightforward extension to the com-
bination of static features.
The information of � and �� features is included in the
preceding and succeeding feature vectors. Thus, in or-
der to model the time characteristics of speech, we con-
catenate static features of the four preceding and four
succeeding vectors to one feature vector. 10 cepstral coef-
�cients plus one energy coe�cient are used as static fea-
tures. With a time window of 9 frames we obtain a feature
vector of dimension 99.
The LDA works well for dimensionality reduction and bet-
ter class separation [2, 6, 9]. After transforming the 99{
dimensional feature vector with the LDA{matrix we just
take the �rst 25 components and build up a smaller code-
book from these vectors.
For model combination we have to go back to the lin-
ear domain. Because of the reduction from 99 to 25 di-
mensions we have lost too much information to maintain
a proper retransformation from the LDA domain to the
cepstral domain. Therefore it is necessary to save a copy
of the 99{dimensional codebook, which can be used for
transformation to the linear domain and for combination
with the noise coe�cients.
The transformation of the 99{dimensional codebook is
done as follows: Because each mean vector of the code-
book has been generated by 9 static feature vectors, we
can split it into its components. The 9 parts are treated
separately as it is done in original model combination.
The energy information is left unchanged. Because of a
normalization procedure during preprocessing the energy
value of speech frames remains unchanged independent
of the present noise level. Figure 1 illustrates the whole
process. Every component is transformed to the linear
domain and combined with the estimated noise charac-
teristics. Back in the cepstral domain the components
are concatenated again. Now the LDA{transformation
is used to maintain an updated LDA{codebook. Thus,
we have derived a noise adapted 25{dimensional LDA{
codebook from a 99{dimensional codebook that has been
trained with clean data only.



4. CEPSTRAL MEAN

SUBTRACTION

Another positive side e�ect of the online estimation of
noise in the cepstral domain is the possibility to use cep-
stral mean subtraction. CMS is a method to reduce
speaker dependency and distortion [2, 5]. It can be shown
that the long{term average of the cepstral vectors repre-
sents the channel characteristics [7]. To remove these ef-
fects we continuously calculate the mean of the cepstral
vectors and subtract it from the actual feature vector.
The adaptation speed of the cepstral mean is determined
by time constants of an exponential window.
Model combination uses a system trained with clean
speech. Therefore the cepstral mean is estimated from
clean speech samples only. If the noise characteristics are
trained o�ine, the cepstral mean of the speech during
training does not contain the mean of the noise cepstral
coe�cients.
During recognition the cepstral mean will adjust to the
cepstral features of noisy speech. Consequently, the resid-
ual noise characteristics diverge from the noise character-
istics that were trained separately before and the com-
bined codebook does not match the actual noise condi-
tion.
However, with our method of adaptive noise estimation in
the cepstral domain the noise level is set correctly to the
current situation. This is because the cepstral subtrac-
tion process is done before noise estimation and so the
codebook is adapted only to the remaining noise level.

5. EXPERIMENTS AND RESULTS

Experiments were performed to evaluate the e�ciency of
the proposed methods. For that purpose we took speech
samples from 60 speakers (33 male and 27 female). 100
digit strings containing 3{5 German digits were recorded
for each speaker in a standing car (SNR about 28 dB). For
testing, recordings of noise in a moving car at 100 km/h
and 140 km/h were added to the speech samples. This
results in a realistic SNR of 12 dB and 8 dB, respectively.
The evaluation was done with utterances of digit strings
from 6 speakers (3 male and 3 female) yielding 600 sam-
ples for each of the 3 environments (0 km/h, 100 km/h
and 140 km/h). Testing utterances are not included in
the training set.
The environments are tested one after another without
restart. Estimation of noise characteristics is done con-
tinuously for the di�erent environments. So adaptation
to each new environment is necessary.
The system is based on semi{continuous HMM's of sub-
word units. For the Gaussian distribution full covariance
matrices are used. The HMM's consist of 3 emitting states
with a loop for each state and a one{state skip. Feature
vectors are generated every 10 ms. For further details see
[2].
First a system has been trained without CMS and LDA.
For recognition we used 3 codebooks based on static, dy-
namic and energy features respectively. Model combina-
tion is performed on the static codebook only.

Without noise compensation the system performed poor
in noisy conditions (see line 2 in Table 1). This was
compared to model combination with continuous noise
estimation added to the recognizer. At the beginning of
each new phrase codebook combination with the previ-
ously estimated noise characteristics was carried out. Be-
cause transformation and combination of covariances is
very time consuming we also performed tests with com-
bination of means only. Then the method becomes quite
similar to the state{based Wiener �ltering as described in
[10].
The combination of the means raises the total string
recognition rate from 26.9% to 40.3%. Additional 2% is
achieved by combining both means and variances. It can
be seen for the di�erent levels of noise that especially the
performance at 140 km/h increased drastically from 2.5%
to 26.3% and 29.3% as shown in lines 3 and 4 of Table 1.

recognition rate at velocity (km/h)
combination method

total 0 100 140

no combination 26.9% 59.3% 18.6% 2.5%

means 40.3% 60.0% 34.6% 26.3%

means + variances 42.4% 59.7% 37.9% 29.3%

Table 1: Recognition results for digit strings with di�er-
ent combination methods

Now a system including cepstral mean subtraction will
be examined. The other parameters of the recognizer re-
main unchanged. As can be seen in Table 2 the recog-
nition rate for the system raises from 26.9% to 42.7%
using the CMS during training and testing. The results
for the mean combination and the mean + variance com-
bination improve as well. However the model combina-
tion yields smaller improvement now than without CMS.
Omitting variance combination caused a loss of perfor-
mance of less than 1% while saving a great amount of
computation time.

recognition rate at velocity (km/h)
combination method

total 0 100 140

no combination 42.7% 76.2% 34.2% 17.4%

means 47.7% 74.3% 42.2% 26.5%

means + variances 48.4% 74.3% 43.5% 27.1%

Table 2: Recognition results for digit strings with di�er-
ent combination methods including CMS

Finally LDA{transformation of the codebook is used for
compensating the complete codebook (not only the static
codebook as it was done so far). The CMS is still included
because it showed signi�cant improvement before. Con-
trary to the above experiments compensation of variances
is not carried out since it seems impractical in real{time
applications. This is due to the additional computation
time that would be necessary for transforming the code-
book matrices to the LDA{domain and the increase of
dimensionality compared to the static codebook used be-
fore. Moreover it showed no signi�cant improvement to
the sole compensation of means when including the CMS.



Results of the new recognizer can be seen in Table 3.
The rates of both systems increase applying the LDA{
codebook. For no combination the system performs about
3%, for mean combination about 5% better. Adding
mean combination to the LDA system yields signi�cant
improvement of close to 8%.

recognition rate at velocity (km/h)
method

total 0 100 140

no combination 45.5% 78.2% 36.8% 21.4%

mean combination 53.4% 75.2% 48.1% 36.7%

spectral subtraction 47.9% 62.7% 41.7% 39.2%

Table 3: Compensated means of LDA{codebook com-
pared to a system without noise compensation and a sys-
tem with spectral subtraction

To relate the e�ectiveness of adaptive model combination
to a di�erent noise reduction scheme we performed an-
other training. In a preprocessing step spectral subtrac-
tion (SPS) was applied during training and testing [1]. To
obtain suitable noisy speech data for SPS training, both
car noises were added to the clean speech samples, tripling
the amount of training samples.
Although training of noisy data was included the results
are worse than the results of adaptive model combination.
Due to the distortion that comes with the SPS, recogni-
tion rate for clean speech data is poor. At 100 km/h
results are better than without compensation but worse
than model combination. Only at 140 km/h results for
SPS slightly outperform model combination. Similar re-
sults for both methods for very noisy speech may be partly
due to a signi�cant amount of wrong segmentation. This
problem in continuous speech recognition has to be fur-
ther investigated.
Finally the computation times for the proposed methods
will be compared. As can be seen in Table 4 the require-
ments di�er signi�cantly. Combining means in the static
codebook took 0.05 seconds on a DEC Alpha 300 MHz.
Including full variances of the static codebook requires
considerably more time (0.17 sec). Applying adaptive
model combination to the whole LDA codebook (informa-
tion of temporal derivatives included) is more e�cient.

mean combination 0.05 sec

mean + variance combination 0.17 sec

mean combination + LDA transformation 0.09 sec

Table 4: Runtime for di�erent combination schemes of a
codebook (static or LDA) on a DEC Alpha 300 MHz

6. CONCLUSION

In this contribution we proposed a new adaptive approach
to model combination. This is essential in slowly varying
noise conditions such as car environments, because train-
ing of noise characteristics can not be performed for all
possible situations. By estimating noise parameters in the
cepstral domain, cepstral mean subtraction can be added
to reduce convolutional noise. Additionally, application

of LDA{transformation was introduced to reduce dimen-
sionality in the context of model combination. All of
the methods yield signi�cant improvements for the model
combination scheme. Further tests show that adaptive
model combination compares well with spectral subtrac-
tion.
Future work will include experiments with speech data
recorded in moving cars. Also methods for segmentation
of noisy speech are under investigation.
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