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ABSTRACT

A speechrecognitionsystem for modeling an acoustic mismatch
across different environments is presented. The basic philos-
ophy is to apply discriminative learning techniques to sepa-
rate the recognition process, that is represented by a hidden
Markov model (HMM), from the environmental process which
is denoted by a limited number of translation vectors. Each
segment of speech is assigned to an environment and recogni-
tion is performed upon projecting the parameters of the HMM
to best characterize the acoustic space of that environment.
The proposed system provides an interesting framework for
better modeling and adaptation of speech signals with varying
acoustic conditions. Experimental findings on connected digits
recognition for three different environments are reported.

1. Introduction

One classical problem with automatic speech recognition
(ASR) systems is their ability to maintain robustnessto a
large variety of mismatched acoustic conditions that exist
between the training model and the testing environment.
A family of techniques have been proposed during the
past several years for dealing with this type of problem,
ranging from feature to model compensation methods. In
essence, the objective is to transform the features of an
ASR system in such a way that would bring them within
the vicinity of the statistical model space and/or to trans-
form the model parameters in order to better character-
ize the distorted feature space [3]. Lines of research in
this area include the family of cepstral normalization tech-
niques by CMU [9], bias removal [7], stochastic matching
[8], parallel model combination [1], etc. By assuming some
naive model of the mismatch, these techniques can suc-
cessfully compensate for signal distortion resulting, gen-
erally, in a moderate improvement in recognition perfor-
mance. Clearly, the inaccurate assumptions in modeling
the mismatch limit the capabilities of these compensation
techniques especially when dealing with real-world situ-
ations such as different network conditions, transducers,
speakers, noise, etc.

To enhance robustness particularly when deploying a
speech recognition service, it is customary to train the sta-
tistical model (e.g., HMM) on a wide range of speech data
in the hope of learning and maintaining robustness across
a spectrum of acoustic conditions. Although training on a
variety of data collections is known to improve ASR per-
formance, the resultant “diffused” model with its large
variances become unsuitable for achieving high-accuracy
in any one particular environment. As pointed out by
Lee [3], being able to cope with large training data in an
efficient manner could potentially provide more precise
acoustic models for speech recognition. Current state-of-
the-art ASR systems employ an integrated strategy which
uses large training data as well as feature/model compen-

sation techniques in order to achieve competitive recogni-
tion performance.

In this paper, we propose a parallel environment model
(PEM) for characterizing an acoustic mismatch across
PEM is similar in spirit to
the environment-independent cepstral compensation tech-
nique [9] and to the framework of family discovery [5]
in that training is performed on each environment sepa-
rately. However, the basic philosophy behind PEM is to
use discriminative learning techniques to isolate the recog-
nition process, that is represented by an HMM, from the
environmental process which is denoted by a set of trans-
lation vectors. The HMM conducts the basic modeling
of the speech units while the translation vectors help to
transform the HMM into an acoustic space that is more
appropriate for the testing environment. In principle, this

different environments.

framework should lead to an improved recognition system
for better modeling and adaptation of speech signals with
varying acoustic conditions.
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Figure 1: A schematic diagram of the PEM system

Figure 1 shows a schematic diagram of the PEM system
which includes a general purpose HMM, referred to as
the base model, along with a family of parallel models,
each representing a different environment. An environ-
ment may refer to a collection of data that is spoken by
specific types of users (e.g., preteens), or recorded over
particular network conditions (e.g., digital cellular). An
environment may also be considered as a subset of the
training data that can be partitioned by maximizing some
optimality criterion (e.g., likelihood) as will be illustrated
in Section 2.1. Speech recognition using the PEM system
involves identifying the most appropriate environment for
each testing utterance and then transforming the param-
eters of the base model to best characterize the acoustic
space of that environment. Model transformation involves
shifting the Gaussian parameters using a limited number
of translation vectors that are discriminatively trained on
each environment separately. Due to the small number of
these vectors, PEM is capable of handling several environ-
ments at a relatively small computational cost. Further,
the parallel architecture of the PEM system provides a
suitable framework for long-term adaptation of the model



parameters as will be illustrated in Section 2.3.

2. THE PEM SYSTEM

The PEM system consists of a HMM (a base model), Ag,
representing the recognition process and a set of M par-
allel models, {A;}i=1,n, representing the environmental
process. The objective of this system is to provide an
improved framework for coping with acoustic variations
that are caused by multiple recording conditions. The
basic strategy is to transform the parameters of the base
model to best characterize the acoustic space of the test-
ing data. Parameter transformation is performed using
a limited number of discriminatively-trained translation
vectors. In this section, we describe the method for creat-
ing and identifying an environment, training and adapting
the translation vectors and, finally, evaluating the PEM
system.

2.1. Environment Classification

Let X = {#1,%2,..,z7} be a test sequence of T feature
vectors, and {C;}i=1,m be a set of M classes, or environ-
ments. When performing environment classification, the
task is to identify the environment that best characterizes
the feature space of X. If p(X, (1) is the joint probability
density function for X and Cj, then the optimal classifier
is the one that satisfies the decision rule

Cpx = argmlaxP(X, ). (1)

A classifier may be represented by a vector quantization
(VQ) codebook, a Gaussian mixture model (GMM), a
HMM or a neural network. A study using a VQ code-
book and a GMM, both adopting the same number of
parameters, showed that the two classifiers are equiva-
lent in terms of accuracy. Accordingly, to minimize com-
putational effort, PEM employs a set of VQ codebooks
{Ci}i=1,nm, such that the environment with a codebook
that minimizes the distortion measure

Cp» = arg mlin d(X,G) (2)

is selected. d(X,C;) is essentially a weighted Euclidean
distance.

The knowledge of associating X with a particular envi-
ronment during the training phase can be either available
or established based on some optimality criterion. For ex-
ample, if multiple data collections are utilized in training,
each collection may then be considered as a separate en-
vironment. Consequently, a VQ classifier can be designed
for each environment by applying, for example, the Lloyd
clustering algorithm. Alternatively, if knowledge of the
environment is unavailable, we may adopt matrix quanti-
zation in which clustering is applied at the utterance level,
rather than at the frame level. The objective would be to
build a set of codebooks {C;} that minimizes the overall
distortion, D, over, say, N training utterances:

DZZd(Xi,Cl*)'l(Xi € Cix), (3)

where 1(-) is an indicator function and d(X;, Cix) is a
weighted Euclidean distance between the features X; and
the classifier corresponding to the nearest environment [*.

2.2. Model Training
In principle, separating the recognition process from the
environmental process provides an interesting framework

that could facilitate a better understanding of the acous-
tic mismatch in speech recognition. In PEM, this problem
is defined as finding an environment-specific transforma-
tion, My,, with corresponding set of parameters ¥, that
satisfies A; = My, (Ag). In this study, My, is repre-
sented by a limited number of translation vectors that are
discriminatively-trained on each environment separately.
We consider model transformation for an environment [ as
a deviation in the parameters of the base model, Ao, from
those in the target environment, A;. Thus A; = Ao+ AA,
where AA; is referred to as the environment process for [.
In PEM, {AA;} are computed using the minimum clas-
sification error (MCE) framework that was proposed by
Juang and Katagiri [2]. Given a speech token (or utter-
ance), X;, for class string ¢ that belongs to environment
l, discriminative training of the parameters of A; is per-
formed by minimizing the following loss function over the
entire training data:

J=) S{d(Xi, Ao} 1(Xs € ), (4)

where S{-} is a sigmoid non-linear activation function
and d(-) is a misclassification measure which is essen-
tially a normalized log likelihood ratio between the correct
string hypothesis and alternative (competing) hypotheses
to string class 1 (see details in [2]).

The objective of MCE training, as applied to PEM, is
to estimate the parameters of the environmental process,
AA;, that minimize the loss function J. This is achieved
through gradient descent, such that at the »'" iteration,
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Al €n > 0, AEO) =Ao. (5)
When the acoustic mismatch between the base model
and a given environment is not severe, it is expected
that some of the parameters of Ag will undergo negligible
change. Further, training Ay on each environment sepa-
rately may lead some parameters to evolve in the same
manner, thus demonstrating similar learning characteris-
tics. To design a more efficient PEM system, we introduce
tying among model parameters that display similar learn-
ing (or no learning) behavior. In essence, we cluster the
parameters of AA; for each environment into a limited
number of translation vectors, {V;}. The resultant model
Al = Ao + V: is further trained by minimizing the loss
function in Eqn. 4 with respect to the parameters of Al,
as opposed to Ag. This notion of clustering the translation
vectors based on their learning characteristics rather than
their acoustic information is similar to that proposed in
vector field smoothing [4], and can be considered as a form
of parameter tying. The nature of this tying is particu-
larly appropriate for discriminative training since, unlike
conventional tying schemes, it avoids integrating similar
acoustic parameters that may correspond to confuseable
events. Tying can potentially reduce the size of the envi-
ronment models by a factor of ten causing only a minor
effect on the recognition performance (see Section 4).

2.3. Long-term Adaptation

In telephone speech recognition, conventional systems
that rely on a single HMM are known to perform poorly
when attempting to do long-term adaptation on a wide-
range of acoustic conditions. The parallel architecture
of the PEM system, however, provides a more suitable



framework for adaptation and can potentially lead to a
significant improvement in recognition performance. Fur-
ther, the compact representation of the environment mod-
els through tying can provide an additional benefit when
performing adaptation with a limited set of data.

In PEM, long-term adaptation affects solely the parame-
ters of the desired environment model (i.e., the translation
vectors). Given a set of adaptation data, {Y;}, we opti-
mize the translation vectors {V;} in order to minimize the
loss function

Jo = S{d(Y;, A} - 1(Y; € @), (6)

This procedure is a straight-forward extension to the
training process described in Section 2.2.

2.4. Evaluation of the PEM system
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Figure 2: A block diagram of the PEM speech recognition
system.

Fig. 2 shows a block diagram of the PEM speech recog-
nition system. Following feature extraction of X, the
most likely environment, [*, which minimizes the distor-
tion measure in Eqn. 2 is identified. Model integration is
then performed which includes transforming the parame-
ters of the base model Ag to best characterize the acous-
tic space of X. The newly constructed HMM, namely
Al* = Ao 4+ V=, is then passed to the recognizer which
performs standard Viterbi beam search.

This entire process of identifying an environment and
transforming the base model requires less than a 3% of
CPU time for each additional environment added to the

PEM system.

3. DATABASE AND BASELINE
PERFORMANCE
A speaker-independent telephone based connected dig-
its database was used in this study. Utterances rang-
ing from one to sixteen digits in length, were taken from
three different field trial data collections. The first col-
lection, referred to as “preteens”, included children be-
tween the ages of 6 and 18 calling over a wireline network.
The second collection, referred to as “adults-wireline”,
included adult speakers between the ages of 16 and 70
calling over a wireline network. The third collection, re-
ferred to as “adults-wireless” included adult speakers call-
ing over a cellular network which was mostly an analog.
In all three collections, data was recorded over a variety
of environmental conditions and using various transducer
equipments. The training and testing data included 5767
strings and 1261 strings for “preteens”, respectively, 9562
strings and 818 strings for “adults-wireline”, respectively,

and 15487 strings and 1118 strings for “adults-wireless”,
respectively. Although each collection represented a wide
range of acoustic variations it was considered as an indi-
vidual environment in this study.

During feature extraction, a set of 39 features per frame
was computed. This included 12 LPC-based cepstral coef-
ficients plus a log energy along with their first and second
order time derivatives. Each feature vector in the base-
line system was directly passed to the recognizer which
modeled each word (i.e., digit) in the vocabulary by a set
of left-to-right continuous-density HMMs [6]. Each word
was divided into three units, namely, head, body and tail.
To model inter-word coarticulation, each word was made
to have a single body with multiple heads and tails, re-
sulting in a total of 274 sub-word models. Each sub-word
model consisted of 3 to 4 states, with each state having a
mixture of 4 Gaussian components.

System ENV1 | ENV2 | ENV3 | AVG
Global-ML 16.1 5.1 4.4 6.9
Global-MCE 8.1 2.4 1.3 3.0
Matched 6.2 1.9 0.8 2.3
PEM 6.6 1.9 0.9 2.4
PEM* 6.8 1.7 1.1 2.4
Adapt-Global 6.5 2.7 1.6 2.9
Adapt-PEM 5.5 2.0 1.0 2.3
Adapt-PEM* 6.3 1.8 1.2 2.4

Table 1: Percentage word error rate for various recog-
nition systems. ENV1 denotes “preteens”, ENV2 de-
notes ”adults-wireline”, ENV3 denotes “adults-wireless”
and AVG denotes the average performance over the three
environments.

Table 1 presents the performance of the baseline recog-
nizer when applying maximum likelihood (ML) training
on the entire three data collections (labeled as “Global-
ML”). The results include the word error rate (includ-
ing insertions, deletions and substitutions) when testing
on each environment separately. To improve the baseline
system performance, the Gaussian means of the HMMs
were further optimized using MCE training. The re-
sults of this experiment are shown in Table 1 (labeled as
“Global-MCE”) which reflect our state-of-the-art perfor-
mance when training on the entire data set. This amounts
to a 56% reduction in the word error rate over the “Global-
ML” system.

4. EXPERIMENTS USING PEM

The extent in which global training affects the recogni-
tion performance was further investigated. An experiment
was conducted in which discriminative training, using the
“Global-ML” model, and testing was done on each envi-
ronment separately. The results of this experiment are
shown in Table 1 (labeled as “Matched”) which suggest
that matched environment training and testing leads to a
further drop in the word error rate by about 23% over the
“Global-MCE” performance. This improvement supports
the notion that global training on multiple environments
could result in “diffused” recognition models.

In the next set of experiments, we evaluated the PEM
recognition system in Fig. 2. Recall that the intent when
incorporating PEM was to transform the base model pa-
rameters to better characterize the acoustic space of the



testing environment. The “Global-ML” was considered
as the base model in this experiment and each environ-
ment was associated with a VQ classifier for identification
and a set of translation vectors for model transformation.
Each VQ classifier included 64 codewords and was de-
signed based on cepstral information only. Translation
vectors were assigned for all Gaussian means and were
trained using the procedure outline in Section 2.2.

Table 1 presents the word error rates (labeled as “PEM”)
when evaluating the PEM system on the three selected en-
vironments. These results compare favorably with those
reported when training and testing on the same environ-
ment (see results for “Matched”). Although environment
classification in this experiment was only 91% correct, it
is certain from the results that this did not play a major
role in degrading the overall recognition performance.
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Figure 3: Word error rate as a function of the number of
translation vectors.

The procedure for reducing the number of translation vec-
tors, as described in Section 2.2, was evaluated in an ex-
periment on the “adults-wireless” data. Fig. 3 shows the
word error rate as a function of the number of transla-
tion vectors. These results, obtained by clustering the
translation vectors and further training the set through
MCE, demonstrate that the recognition performance can
be maintained even when reducing the number of transla-
tion vectors by a factor of 10 (the initial model included
3352 Gaussian distributions). With this level of compres-
sion, we evaluated the PEM system with all the three en-
vironments active simultaneously. The results are given
in Table 1 (labeled as “PEM*”) which closely match those
reported for “PEM”.

Finally, we performed supervised adaptation, as described
in Section 2.3, on three of the systems used, namely,
“Global-MCE”,“PEM” and “PEM*”. A subset of 94
strings were used, mostly taken from the “preteens” col-
lection. From the results given in Table 1 we notice that
all the three systems improved on the “preteens” envi-
ronment. However, the conventional “Global-MCE” rec-
ognizer showed a moderate degradation in performance
when tested on the other two environments. Since the
models for “adults-wireline” and “adults-wireless” were
not highly affected during adaptation, the performance on
their respective data collections when using the “PEM”
and “PEM*” systems was almost unchanged.

5. Summary
This paper presented a speech recognition system for
modeling an acoustic mismatch across different record-
ing environments. In the so called, parallel environment
model (PEM), discriminative learning techniques were ap-

plied to isolate the environmental process from the basic
modeling of speech units. The PEM system was shown
to provide an efficient framework for better modeling
and adaptation of speech signals with varying acoustic
conditions. Our experimental results on connected dig-
its recognition, corresponding to three different environ-
ments, demonstrated (a) a reduction in the word error
rate by about 20% when using the PEM system over a tra-
ditional recognizer employing global training, (b) a mini-
mal change in recognition performance when reducing the
size of the environment models by a factor of 10, and (c)
supervised adaptation resulted in a little change in perfor-
mance for environments unseen during training. Exper-
imenting with the PEM system using different number
of mixture components, mixture tying and bias removal
techniques is currently in progress.
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