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ABSTRACT

The work described in this paper attempts to
automatically generate word baseforms as used in the
pronunciation dictionaries of large vocabulary speech
recognition systems. The input to the algorithm consists
of several sample utterances per word. No additional
information, like e.g. word spelling, is used. The task
involves determining a suitable inventory of subword
units (SWU) as well as determining the baseforms
themselves.
Experiments show that improvements over a triphone
based dictionary are possible with less than ten sample
utterances per word if test and training vocabularies are
different. A possible application would be a system
based on a fixed inventory of HMM-models that needs
to be adapted to different vocabularies.

1.  INTRODUCTION

Large vocabulary speech recognition systems usually use
pronunciation dictionaries to describe the composition
of words from subword units (SWU). Popular examples
of SWUs are phones and triphones. On the phone level,
the dictionary entries (also called baseforms) are either
designed by humans or are generated by a grapheme to
phoneme converter. This paper describes an approach to
find word baseforms by looking at sample utterances.
Experimental results with a speaker-independent,
continuous speech recognition system suggest that the
approach is both useful and practicable. There are two
main requirements that a recognition system that uses
baseforms derived from sample utterances must fulfill to
be practicable:

• The number of required sample utterances per word
must be small (say, <10) to avoid tedious and
expensive speech recording sessions.

• If there are no examples at all for a word, there must
still be a way to add the word to the recognition
vocabulary.

2. WORDMODEL QUANTIZATION

An overview of the complete training process is given in
the following figure.
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Figure 1: Overview of training process

The basic subword unit in the dictionary is the triphone
state rather than the triphone itself. In the experiments,
a set of 1353 triphones was used. Since each triphone
was modeled by a three-state HMM, this results in 4059
triphone states. Using the triphone models, good initial
word models can be constructed. Theses models are then
retrained using a few word utterances and smoothed by
interpolating with the original triphone parameters.
Each state in the resulting word model is then mapped
to the closest state in the set of 4059 triphone states. A
similar approach was proposed in [3]. However, the
experiments reported there were restricted to a
vocabulary of 24 words and required over 100 sample
utterances per word to build a new baseform. The
experiments performed by the author showed that both
the training process for the word models and the
distance metric used when mapping the word model
states to the triphone states are extremely crucial.
Depending on the choices made, results varied between
hopeless and practicable. The following three are the
most important requirements:

3.  DISTANCES

The emission probability of a feature vector in a state
with a single semicontinuous codebook of size M is
described by the formula
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codebook. For distance measurements between states we
only look at the weights pk . With this simplifying

assumption, it is sufficient to discuss the distance
computation between two sets of weights
P p pM= ( , , )1L  and Q q qM= ( , , )1L .

A popular choice for a distance within the speech
recognition community is the information loss:
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A little thought reveals that this distance has the strange
property that distributions with small training counts are
close to any other distribution. If used for quantization
purposes, most retrained word model states will be
mapped to the least trained elements in the set of
triphone states. Results are catastrophic. Of course, the
exact same property makes dloss  a good choice for

clustering purposes.

Three more suitable candidates are directed divergence,
euklidean distance, and absolute distance:
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Before applying these distances to the quantization task,
they need to be generalized to suit the multi-stream
architecture of the recognition system. In a two stream
system, emission probability is

f x p f x c p f x ck k
k

M

k k
k

M

( ) ( | ) * ~ ( |~ )
r r r=

= =
∑ ∑

1 1

  ,

where the ~pk are the weights for the second stream, e.g.

∆-coefficients. Experiments show that it is absolutely
important not to ignore this information during state
quantization. For the generalizations of ddiv  and deuk to

multiple streams, efficiently computable formulations
can be derived exactly, e.g.
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For deuk  something similar is possible, but the

notation is somewhat messy, so it is omitted here. For
dabs things are not so easy, so an approximate substitute

will have to do:
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In experiments, the differences between these three
choices in terms of word accuracy achieved with the
resulting baseforms was not remarkable. However, the
experiments also showed that the generalization to
include all streams was essential. When only one stream
was considered during quantization, accuracy degraded
in an unacceptable way. It is quite common practice to
make similar simplifying assumptions (like
unimodality) during distance computation, e.g. in works
on distribution sharing. It might be well worthwhile to
invest some effort into developing efficient and
sufficiently exact distances for continuous mixture
distributions.

4.  THE RECOGNITION SYSTEM

This section describes the basic structure of the
recognition system used for the experiments.
As acoustic features 12 MFCC coefficients were used as
computed by the HTK ([4]) toolkit. Frame length was
30ms, with 100 frames per second. These features were
augmented by 12 first order delta coefficients, energy
and ∆-energy, resulting in a feature vector of dimension
26.
These features are modeled as three streams which are
assumed to be independent of each other: The MFCC -
coefficients themselves, the delta coefficients, and the
energy with its first derivative. The features from each
stream are quantized using one semicontinuous
codebook per stream. The covariance matrices used in
the codebooks were diagonal matrices. This assumption
is acceptable if multiple streams are used.
Triphones and monophones were modeled by three state
Bakis type HMMs. Each baseform is terminated by a
one state model supposed to account for interword
effects.
The above design decisions result in a system with a
structure very similar to the one described by Huang
([2]). Note that apart from the MFCC coefficients, the
HTK toolkit was not used. The system is described in
more detail in [1].

5.  EXPERIMENTS

The test setup used 10960 utterances by 97 speakers to
train the monophones and triphones (training set A).
The vocabulary size of the training set was 1486. The
recognition vocabulary contained 365 words, some of
which occured in the training vocabulary. Word models
were trained on utterances of the 365 test words, as cut
from continuous speech (training set B). The baseforms
resulting from quantizing these models onto triphone
states were used during recognition on the test set C,
which uses the same vocabulary as set B. Note that the
training set consists of two parts: One domain
independent, large general purpose training set to train
triphones, and a small set of sample utterances from a



specific application vocabulary. The test set C contained
200 sentences uttered by a speaker who had no
utterances in set A or set B. No language model was
used, so perplexity was 365.

5.1. Triphone Training

As a performance baseline, a fairly generic triphone
approach was chosen. All within-word triphones
occurring in training set A more than 40 times were
assumed to be sufficiently trained. Their parameters
were interpolated with those from the corresponding
monophones to provide robustness. Triphones occurring
less than 40 times were assumed to be undertrained and
were replaced by their center monophones. This results
in a word accuracy of 66.3 % on set C. This rather
unsatisfactory performance is caused by the change in
vocabulary. On the same test set, accuracy increases to
81% if triphone training is based on set B. This
discrepancy illustrates the well known fact that
triphones are particularly suited to setups where test and
training vocabulary are identical.
The question now is by what margin the 66.3% can be
improved without changing any HMM parameters, just
by tuning the pronunciation dictionary.

5.2. Wordmodel Training

The wordmodels trained on set B are the basis for the
automatically generated baseforms. Their training has to
be done carefully to guarantee good results with few
examples.
Before training starts, wordmodels are constructed as
sequences of the appropriate triphones. The word
samples cut from set B are then used for retraining. In a
final step, the resulting model parameters are
interpolated with the parameters as they were before
training started. Accuracy was measured without
smoothing (NS), with total smoothing (TS, = triphones),
with 50% smoothing (HS) and with parameter
interpolation weighted by the training count for the
parameters (WS). The results are displayed in the
following table:

#samples NS TS HS WS
all 60.0 66.3 86.0 82.1
5 61.2

This shows that unsmoothed training actually degrades
performance, even though all available word samples
were used. The number of samples per word ranged
from at least 15 up to about 100 for the most frequent
words. Weighted smoothing offered no advantage over
the simplistic 50% approach, which yielded 86%
accuracy. When monophones are used for interpolation
and initialization, accuracy only slightly degrades to
84.9 % (not in the table).
When the number of training utterances is restricted to
five samples per word chosen with a random number
generator, word model accuracy is only 61.2 %.

The robustness of semicontinuous models is important
when using few examples. With discrete models and 5
samples per word, accuracy collapses to 49.8 % from
61.2 % in the semicontinuous case, even though the
same smoothing techniques are employed. This huge
difference almost vanishes as the number of samples
increases.

5.2. Distances

In section 4, several ways to compute the distance
between distributions during quantization were
suggested. The following table compares the distances
in terms of word accuracy when they are used for
baseform generation.

abs div euk euk 1
74.1 73.9 74.7 56.6

While there is little difference between the distances
that use all available information, it becomes clear that
the restriction to one stream (column euk 1) is not
acceptable.

5.2. Samples per Word

Figure 2 shows both the recognition accuracy of the
wordmodels themselves and of the resulting baseforms,
depending on the number of sample utterances used for
retraining.
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Figure 2: Recognition accuracy depending on number of
training samples.

The surprising result is that while more sample
utterances per word have a strong effect on the quality
of the resulting word model, this is no longer true for
the baseform obtained by the state quantization process.
When only five sample utterances per word are used,
word accuracy even increases after quantization. The
recognition accuracy using the normal triphone
baseforms was 66.3%. Even with only 5 examples,
69.8% accuracy results, as can be seen in the figure.
Using more than 15 sample utterances does not help a
lot any more. A limit is reached at 75% accuracy. This
might indicate that the recognition rate is limited by the
quality of the triphones rather than the baseforms in the
dictionary.



5.3. Example Baseforms

An example of a triphone baseform and a baseform
resulting from the automated process might serve to
make some of the above explanations more
understandable. The notation we use for triphones is
l_m_r
which stands for the phone /m/ preceded by /l/ and
followed by /r/. The special symbols ̂  and $ denote the
beginning and the end of a word, respectively. The
'phone' /ssil/ is the interword model with one state.
When referencing triphone states, the state number
(starting at 0) is appended to the triphone notation. So
l_m_r_0
is the first state of the above triphone.

With this notation, the triphone baseform for the
german word 'Zug' (meaning train) is:

^_t_s t_s_u s_u_k u_k_ssil k_ssil_$

Note that all triphones occured frequently enough in the
training material, otherwise monophones would have
been substituted.
The somewhat lengthy baseform for the same word after
quantization is:

n_t_ssil_0  n_t_s_1 l_t_s_2 t_s_U_0
t_s_u_1 t_s_u_2 s_u_k_0 s_u_k_1
s_u_k_2 u_k_ssil_0 u_k_ssil_1
u_k_ssil_2 u_ssil_$_0

This example nicely illustrates some of the typical
properties of the automatically generated baseforms.
First of all, the center phone almost never differs from
the center phone in the original triphone dictionary. Just
the left and right context varies, as in the first phone of
the example.
More remarkably, the state number (0-2) almost never
changes, i.e. the beginnings of phones are mapped to the
first state of some triphone, the center to state 1, and the
end almost inevitably to a state x_x_x_2 , although
there is no restriction whatsoever in the algorithm.

6.  CONCLUSION

The wordmodel-quantization approach presented above
was successful in a setup where the domains of test and
training, i.e. the vocabulary or the frequency distribution
of words in the vocabulary, was different. This is a
situation where a triphone based dictionary does not
guarantee the usual performance.
The important design decisions are summarized by the
following points:

• The word model training must use semicontinuous
HMMs. Discrete models are not robust enough, and
continuous models do not have simple and exact
distance measures.

• The parameters obtained after training a word model
must be interpolated with the original triphone
parameters, even when several hundred training
utterances are used.

• The distance metric used when mapping word model
states to triphone states must consider all
distribution parameters. If e.g. the emission
probabilities for the ∆-Parameters are omitted from
distance computation to gain speed, the quality of
the resulting baseforms degrades considerably.

Experiments showed that a substantial gain in
recognition accuracy (66.3% → 72.2%) was already
obtained with ten randomly chosen sample utterances
per word. Even with five samples per word, there was
still noticeable improvement. This is quite remarkable,
since the whole word models used to create the
baseforms in this case had less performance than the
models built from the resulting state sequences. It seems
that the quantization onto the well-trained inventory is
able to compensate some effects of undertraining.

We have thus met the two requirements mentioned in
the introduction: It is possible to improve the
pronunciation dictionary with a reasonably small
number of sample utterances. Because the underlying
inventory of SWUs does have a phonetic interpretation,
it is still possible to enter new words into the
vocabulary, even if no sample utterances at all are
available, simply by using a triphone representation.
This baseform might later be improved online as
samples of the new word come in.

However, in other experiments not reported here, it was
not possible to beat the performance of triphones for
identical test and training domains. This is neither
astonishing nor really a drawback of the approach, since
automatically generated baseforms are most useful in
applications were new words have to be integrated into
the vocabulary.
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