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Abstract

In this paper1 two di�erent models of pronunciation
are presented: the �rst model is based on a rule set
compiled by an expert, while the second is statisti-
cally based, exploiting a survey about pronunciation
variants occurring in training data. Both models gen-
erate pronunciation variants from the canonic forms
of words. The two models are evaluated by applying
them to the task of automatic segmentation of speech
and then comparing the results to manual segmenta-
tions of the same speech data. Results show that
correspondence between manual and automatic seg-
mentations can be signi�cantly improved if pronunci-
ation variants are taken into account. The statistical
model outperforms the rule based model.

1 Introduction

The modeling of pronunciation is becoming increas-
ingly important in state-of-the-art ASR-systems.
While allophonic variations of speech sounds can be
modeled statistically by e.g. Hidden Markov Mod-
els or Arti�cial Neural Networks, a large number of
possible pronunciation variants occurring in sponta-
neous speech extends beyond single speech sounds
and reaches up to whole words or word tuples. Not
even context-dependent acoustic models for sub-word
units (like phonemes) are able to cover pronunciation
variants of this kind. Therefore, pronunciation mod-
eling is of great importance for many applications in
speech technology.
In recent work [4] it has been shown that the

consistent application of pronunciation variants for
whole words and word tuples can improve the perfor-
mance of an ASR-system. The approach, like others,
involves the generation of pronunciation variants on
the word level for the pronunciation lexicon compo-
nent of an ASR-system.
The pronunciation models presented here are in-

tended to be generic and not dependent on a speci�c
lexicon. This is achieved by providing pronunciation
variants for arbitrary phoneme sequences (micro pro-
nunciation variants) and, in the case of the statistical

1This work was funded by the German Federal Ministry

for Research and Technology (BMBF) in the framework of the

VERBMOBIL project.

pronunciation model, probabilities for the occurrence
of a variant.

The phoneme sequences for which possible vari-
ants are provided can span word boundaries, because
cross-word pronunciation variants occur frequently in
spontaneous speech. The consideration of such vari-
ations led to improved results in various applications
(e.g. [4]).

To show the ability to model the pronunciation of
real speech data both models are applied in an auto-
matic segmentation and labeling system for German
spontaneous speech and compared with manual seg-
mentations of the same data.

2 Pronunciation Modeling

Both pronunciation models discussed in this paper
generate possible pronunciation variants given the
reference transcription of an utterance. The refer-
ence transcription is the concatenation of the canonic
forms of the words in the utterance. The canonic
form is an arbitrary but unique phonemic transcrip-
tion of a word spoken in isolation. The reference
transcription of the orthographic representation of
an utterance can therefore be determined by a simple
lexicon lookup procedure. If an adequate inventory
S of phoneme symbols (e.g. SAM-PA2) is used the
reference transcription c can be denoted as a string
of phoneme symbols c = 
0
1 : : : 
N�1; 
i 2 S.

It is well known that in 
uent speech the actual
phonetic realizations of words often di�er from the
canonic form. This is especially true for spontaneous
speech. The actual phonetic realization of an utter-
ance will in most cases be di�erent from its refer-
ence transcription. The actual realization r can be
written as a (broad) phonetic transcription using the
same inventory of phoneme symbols as the reference
transcription, i.e. r = �0�1 : : : �M�1; �i 2 S.

To model the pronunciation of a reference tran-
scription c the probability p(rjc) for the occurrence
of a certain realization r is stated. The structure of
the model has to be suitable for ASR applications.
Therefore, a �rst order Markov-chain which can be
represented as a directed acyclic graph (DAG) was
chosen as a model generating possible realizations for

2see http://www.phon.ucl.ac.uk/home/sampa/home.htm



a given reference transcription. The nodes of this
DAG emit symbols from S and its edges specify pos-
sible transitions and their probabilities.
The DAG for a given c is constructed from mi-

cro pronunciation variants which specify possible al-
ternative realizations for substrings of the reference
transcription comprising a small number of phonemes
(up to 10) and possibly spanning word boundaries.
Formally, a micro pronunciation variantm 2M con-
sists of a string a of symbols from S which can be sub-
stituted by a string b if a occurs in a certain context
in the reference transcription. This pre- and post-
context is speci�ed by two strings x and y respec-
tively. A micro pronunciation variant can be written
as a tuple m = (x; a; y; b) of symbol string over S.
A micro pronunciation variant can be applied to c if

it can be written as c = sxayt where s is an arbitrary
pre�x and t is an arbitrary su�x of c. Note that the
concatenation of strings a and b is denoted as ab and
the length of a string a as jaj. The decomposition of
c is not necessarily unique and therefore the location
where a matches has to be considered. The set of
all matching micro pronunciation variants and the
corresponding location of the match is then given by

Q(c) =
�

(i; x; a; y; b)
�� (x; a; y; b) 2M

^ 
i�jxj : : : 
i�1 = x

^ 
i : : : 
i�jaj�1 = a

^ 
i+jaj : : : 
i+jaj+jyj�1 = y
	

(1)

The DAG representing the Markov-chain contains
the following elements:

� Nodes oi emitting the reference transcription c.
Each node oi has the symbol 
i; i = 0 : : :N � 1
associated with it and has a transition to the
node oi+1 (except for the last node i = N � 1).

� For each qk = (i; x; a; b);qk 2 Q; k = 0 : : : jQj a
node or a node sequence qk;j emitting b. Each
node qk;j has the symbol �j ; j = 0 : : : jbj � 1 as-
sociated with it and, if jbj > 1 transitions to the
successor node qk;j+1 (for j = 0 : : : jbj � 2).

� For each qk = (i; x; a; b);qk 2 Q transitions
from the node oi�1 to qk;0 and from the node
qk;jbj�1 to oi+jaj.

The nodes oi originate from the reference transcrip-
tion and the nodes qk;i from pronunciation variants.
Every path through the DAG from a initial node
to an terminal node emits a possible pronunciation
variant r for the given c. In a Markov-chain the
overall probability of a symbol sequence, i.e p(rjc)
is the product over all transition probabilities along
the path emitting the symbol sequence.
Both pronunciation models described below estab-

lish a DAG for a given reference transcription c. They
di�er in the set M of micro pronunciation variants
and in the way transition probabilities are calculated.

2.1 Statistical Pronunciation Model

The set M of micro pronunciation variants is ob-
tained by statistically evaluating a survey of pronun-
ciation variants occurring in manually labeled train-
ing data.
For each utterance in the training corpus the refer-

ence transcription and the manually transcribed ac-
tual realization are subject to a maximum common
subsequence alignment, yielding expressions for c and
r of the form

c = s0a0s1a1 : : : aLsL (2)

r = s0b0s1b1 : : : bLsL (3)

where the si are the common subsequences and each
ai in c has to be replaced by bi to obtain r.
If a pre- and post-context of one symbol is con-

sidered and the si are written as the concatena-
tion of their symbols si = �i;0 : : : �i;jsij�1 each tu-
ple (�i;jsij�1; ai; �i+1;0; bi) can be considered as a
micro pronunciation variant, and absolute counts
Nb(x; a; y; b) can be computed over the training cor-
pus. This yields conditional probabilities pb(bjx; a; y)
that the string a occurring in the context of x and
y in a reference transcription is substituted by b if a
substitution takes place (note that always ai 6= bi).
Additionally the probability pv(vjx; a; b) = 1 �

p(:vjx; a; y) that substitution takes place at all has
to be calculated (v denotes the event \substitution of
a by b in the context of x and y"). This is done by re-
lating the number of overall occurrences of the string
xay, i.e. Nv(x; a; y) with the number of occurrences
where a replacement actually took place. This count
is denoted by Nv(v; x; a; y). Taking into account that

Nv(x; a; y) = Nv(v; x; a; y) +

Nv(:v; x; a; y) (4)

Nv(v; x; a; y) =
X

b2�

Nb(x; a; y; b) (5)

where � is the set of all possible strings over S, simple
maximum likelihood estimates can be given:

pb(bjx; a; y) =
Nb(x; a; y; b)P
b̂2�Nb(x; a; y; b̂)

(6)

pv(vjx; a; b) =
Nv(v; x; a; y)

N(x; a; y)
(7)

Because training data are usually sparse discount-
ing techniques well known from language modeling
(e.g. [3]) can be applied to get more robust estimates.
The micro pronunciation variants observed in the

training data establish the set M . Best results were
obtained with a set of the size jM j of approx. 1200,
extracted from 72 dialogs (1245 turns) of The Kiel

Corpus of Spontaneous Speech [1] dialog database.
A set Q(c) and a corresponding DAG for an arbi-

trary utterance with a reference transcription c can
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Figure 1: Part of a DAG representing pronunciation variants of an utterance. All edges are directed from left
to right, the 
oat values give transition probabilities.

now be given. For the calculation of the transition
probabilities eqn. 6 and 7 have to be considered and
moreover the fact that micro pronunciation variants
in Q(c) might overlap and the application of one vari-
ant prevents other variants from being applied. In
other words, statistical dependencies exist between
micro pronunciation variants which have not been
taken into account during training. However, a �-
nite number of maximal non-overlapping subsets of
Q(c) for which the assumption made during training
is true can be found. A probability pc(q) which is
the relative frequency of occurrences of q in these
sets can be calculated and accounts for the context
dependencies in a given c.
The probability for the application of qk =

(i; x; a; y; b) is equal to the probabilities p(qk;0) =
: : : = p(qk;jbj�1) that the symbol emitted by qk;j is in
a realization r.

p(qk;0) = : : : = p(qk;jbj�1) =

= pc(qk)pb(bjx; a; y)pv(vjx; a; b) (8)

with: qk = (x; a; b; y); qk 2 Q(c)

The probability that no micro pronunciation variant
is applied at index i is p(oi).

p(oi) = 1�
X

q̂k2Ui

pc(q̂k)pb(bjx; a; y)pv(vjx; a; b)

(9)

with: q̂k = (x; a; b; y); Ui � Q(c)

where Ui is the subset ofQ
(c) that contains micro pro-

nunciation variants spanning over the node oi. With
eqn. 8 and 9 the probabilities for all transitions con-
tained in the graph can be expressed as:

p(qk;0joi�1) =
p(qk;0)

p(oi)
(10)

p(oi+1joi) = 1�
X

k2�+(i)

p(qk;0joi) (11)

p(qk;ijqk;i�1) = 1 (12)

p(oijqk;j) = 1 (13)

In eq. 11 oi is a predecessor of all qk;0 with k 2 �+(i).
The eqn. 10 through 13 state all transition probabili-
ties occurring in the DAG according to the structural

description given in section 2. Figure 1 shows an ex-
ample.

2.2 Rule Based Pronunciation Model

This pronunciation model is based on a set of pronun-
ciation rules compiled by a phonetician. These rules
make up the setM . The rules were generated by eval-
uating a survey of pronunciation variants occurring
in a speech database (PHONDAT II) and extrapolat-
ing the results to unseen but { from the phonetician's
point of view { possible variants. At the moment the
set comprises approx. 1500 rewrite rules. For a de-
tailed description of the rule set see [5].
As there is no statistical information about the

probabilities of rules, each variant contained in the
resulting DAG is assumed to be equally likely and
the transition probabilities are set accordingly.

3 Alignment

For an assessment of their ability to model the pro-
nunciation of unseen speech data, DAGs produced by
both pronunciation models were aligned to the cor-
responding speech signals containing the utterance.
This alignment results in �nding the transcription
symbol sequence with the highest overall likelihood
and a corresponding segmentation of the speech sig-
nal. A HTK [6] aligner with the following prepro-
cessing settings and HMM-structure was used for this
purpose:

� preprocessing with 13 MFCCs + �rst and second
time derivative + Energy

� context independent phoneme models (SAM-
PA) with 3 to 5 states, 5 mixtures, no state-tying

� bootstrapping and isolated reestimation on a
medium-size hand-labeled speech corpus

Best results for the statistical pronunciation model
were obtained if the scores given by the transition
probabilities in the graph were multiplied by a con-
stant factor and incremented by a constant factor
thereby giving more weight to the pronunciation
modeling.



4 Evaluation and Results

For the model evaluation, segmentations produced
with the HTK aligner as described above were com-
pared with manual segmentations of the same data.
This test data was excluded from the training data
for the acoustic and the pronunciation model. In
a comparison of two segmentations the accuracy in
terms of the transcription and the segment bound-
aries was done after a longest common subsequence
alignment between the segmentations concerned.

A fundamental problem lies in the fact that a
unique correct segmentation and labeling of an utter-
ance does not exist. Even carefully produced man-
ual segmentations carried out by di�erent individuals
will di�er from each other. Therefore, in addition to
the comparison of manual and automatic segmenta-
tions, the manually produced ones were compared to
each other [2].

felix marion htkrla1 htkmr
dani 82.6 78.8 80.2 76.7
felix - 79.9 80.3 77.2

marion - - 74.9 72.5

Table 1: Comparison between 3 manual segmen-
tations (dani, felix, marion), an automatic seg-
mentation with the statistical pronunciation model
(htkrla1), and an automatic segmentation with the
rule-based pronunciation model (htkmr).

Table 1 shows the symmetric accuracy3 in terms of
the transcription symbol sequence for one dialog of
the VERBMOBIL corpus (approx. 5000 segments).
Each cell gives the accuracy if the segmentation as-
sociated with the row is compared to that associated
with the column.

The highest agreement exists among the two man-
ual segmentations dani and felix but both di�er
considerably from the third manual segmentation
marion and are even closer to the automatic seg-
mentation produced with the statistical pronuncia-
tion model (htkrla1). The statistical pronunciation
model consistently outperforms the rule-based model
(htkmr) on this task.

In terms of accuracy of segment boundaries the
comparison between manual segmentations shows a
high agreement: on average 93% of all correspond-
ing segment boundaries deviate less than 20ms from
each other. The average percentage of correspond-
ing segment boundary deviating less than 20ms in
an automatic vs. a manual segmentation is 84%.

3The widely used accuracy measure N�D�S�I
N

relating the

number of segments in the reference (N), deletions (D), sub-

stitutions (S) and insertions (I) which assumes that one of the

segmentations is the reference is made symmetric by averaging

with each segmentation once taken as a reference.

5 Conclusion

The results show that a high-quality segmenta-
tion and labeling can be generated if phonetic-
phonological knowledge is used for modeling the pro-
nunciation of spontaneous speech. This implies the
usefulness of pronunciation modeling, especially sta-
tistically based, for other applications in speech tech-
nology.
The phonetic-phonological knowledge can be in-

corporated in the segmentation process by using a
set of pronunciation rules or a statistical pronuncia-
tion model which is trained on data hand-labeled by
phonetic experts. The former yields slightly worse
performance but is independent of a speci�c domain.
The latter leads to higher accuracy if test and train-
ing data are taken from the same domain.
The entropy of the graphs generated with the sta-

tistical pronunciation model is much lower than with
the rule based model. This shows the close �tting
to the domain and facilitates the task of the HMM
aligner as the high accuracy of the resulting segmen-
tation indicates. The lack of information in the case
of the rule-based model, on the other hand, leads
to very high entropy, i.e \ignorance" in the resulting
graphs. ASR-applications using this kind of model
therefore tend to make more errors.
Because of the promising results and its computa-

tionally e�cient structure the statistical pronuncia-
tion model is at the moment being integrated into
our HTK based speech recognizer.
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