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ABSTRACT

New methods for speaker veri�cation that address the
problems of limited training data and unknown telephone
channel are presented. We describe a system for study-
ing the feasibility of telephone based voice signatures for
electronic documents that uses speaker veri�cation with
a �xed test phrase but very limited data for training
speaker models. We examine three methods for speaker
veri�cation that address these characteristics in di�er-
ent ways, including text-independent mixture models,
a broad phonetic category model that has some of the
properties of both text-dependent and text-independent
approaches, and a text-dependent approach based on
speaker adaptation. The speaker-adaptive approach is
shown to have signi�cantly better performance when the
training and test channel conditions are mismatched, re-
sulting in better overall performance across all conditions.

1. Introduction

In this paper we present new methods for speaker veri�-
cation to deal with the problems of limited training data
and unknown telephone channels. We �rst describe the
application we are investigating, telephone based voice
signatures for electronic documents, and the implications
of the system's requirements for speaker veri�cation. The
limited training data available in this task leads us to
examine alternative methods that can robustly estimate
speaker characteristics, including text-independent mix-
ture models, a model based on broad phonetic categories
that has some of the desirable properties of both text-
dependent and text-independent approaches and a text-
dependent approach based on speaker-adaptive model-
ing. We �nd that the speaker-adaptive approach is able
to estimate speaker models well with very limited data
and that the models show a signi�cant improvement over
other methods when the channel conditions on training
and test are mismatched.

2. Voice Signature Research System

The methods presented in this paper were developed as
part of a system being developed to evaluate the feasibil-
ity of signing electronic documents by speaking over the
telephone. There are a number of applications in com-
merce and government for which electronic documents
represent a large potential savings in processing time as
well as a convenience to customers, but such documents
often require an alternative form of signature. Telephone-

based voice signatures are one alternative to requiring a
handwritten signature on a separate piece of paper. In
this project we have developed a system to investigate
some of the technical and practical issues of voice signa-
tures.

The two key components of a voice signature are the
words of the statement and the voice characteristics of
the speech. The wording of a signature for an electronic
document might be similar to the statement above the
signature on a corresponding paper form, i.e. essentially
a�rming that the document is true to the best of the
signer's knowledge. The voice characteristics present in
the speech play a role analogous to a person's distinctive
handwriting in a written signature. One of the questions
we hope to address with this research is whether a voice
signature can function as an adequate replacement for a
written signature in determining that a signer is who they
claim to be, and in particular how well speaker veri�ca-
tion can perform in automatically screening for possible
fraudulent signatures.

In an actual deployment of a voice signature system for
a large customer base, it would be both inconvenient and
impractical to request that every user of the system enroll
in the system before signing a document by contributing
training speech prior to calling in their �rst voice signa-
ture, particularly if documents are signed infrequently. In
this project we are considering the alternative of collect-
ing a single voice signature as training from each system
user and building a speaker model based on it. While
this approach avoids unduly inconveniencing the user, it
poses a challenge to the veri�cation system of providing
a single phone call and utterance for training.

The system we are using to research these issues has
two major roles, compliance checking and speaker authen-
tication. In compliance checking, the system determines
if a caller is making a good faith attempt at speaking the
signature statement correctly. The determination is made
using speech recognition at the time of the call in order
to give the caller feedback and reprompt them if there are
any problems. The recognizer uses speaker-independent
(SI) acoustic models and has a grammar of the expected
signature phrase that also allows a number of the words to
be omitted. A simple mechanism that essentially counts
the number of content words in the recognized text and
compares the sum to a threshold has proven to be e�ective
at allowing moderate dis
uencies and occasional missed
words while eliminating sentences that are far from the
target phrase. If the system has trouble recognizing a
caller's speech, the caller is given three tries before the
system asks them to call back and try again later.



The second function of the system is to verify that a
caller's voice matches their claimed identity using speaker
veri�cation based on the model built from the target
speaker's training signature. Veri�cation is run after the
caller has hung up, since the process of identifying suspect
signatures will not be perfectly reliable and may in some
cases require human involvement. Note that the veri�er's
task is simpli�ed by the system's compliance check, since
both training and test utterances must be reasonable ap-
proximations to the target phrase.

The limited training data available in the scenario out-
lined leads us to consider veri�cation methods that permit
robust model estimation with very limited training data.
With text-independent models such as the Gaussian mix-
ture model (GMM) [1], the number of parameters can be
readily con�gured to allow training with small amounts of
data. We explore using such a model in the experiments.
However, given our knowledge of the sentences spoken, we
would prefer to take advantage of the more detailed mod-
eling possible with text-dependent methods. One pos-
sibility is to use phonetic-class-dependent models: with
a su�ciently small number of classes we may get some
of the bene�ts of text-dependent models while keeping
the number of free parameters manageable. Another ap-
proach is to take advantage of recent advances in speaker
adaptation and attempt to train speaker-dependent mod-
els of the detailed phonetic contexts that appear in the
text, using a technique such as Maximum Likelihood Lin-
ear Regression (MLLR) [2]. We describe these alterna-
tives in more detail in the following sections.

3. Broad Phonetic Category Model

The Broad Phonetic Category (BPC) model is based on
identifying the phonetic categories in an utterance and
modeling each separately. Separating categories in this
way should make the model more discriminative than typ-
ical text-independent methods that use a single class for
all speech. The system relies on an automatic labeling of
the categories by a speech recognition system. Although
this recognizer can make mistakes, the broad nature of the
categories may help reduce the problems due to labeling
errors. To score an utterance against a speaker model,
we model each of the phonetic classes following the ap-
proach described in [3] and take a simple combination of
the scores across the classes.

In our implementation, we considered 5 phonetic cate-
gories consisting of plosive, fricative, semi-vowel, and two
vowel classes. We investigated two methods for labeling
the speech. In the �rst we used a speaker independent
recognition system to perform word recognition and pho-
netic alignment within words; the phoneme labels were
then mapped to their broad phonetic categories. In the
second method we directly label the speech using a rec-
ognizer that has acoustic models of the phonetic classes
and a \language model" consisting of a statistical bigram
that gives the probability of phonetic class given preced-
ing class. Our initial experiments showed that the pho-
netic labeling produced in the former approach was sen-
sitive to small errors in the word recognition as well as
phenomena such as mis-starts and other dis
uencies. For
this reason, we focused exclusively on the second method
using a phoneme recognizer in the experiments reported
later in this paper.

Given a phonetic labeling of the training speech, we

estimate models of each of the separate phonetic classes,
using the approach described in [3]. Speci�cally, each
BPC is modeled by the mean and covariance of the cep-
stral features and the covariance of the delta cepstra es-
timated from all training speech in that category for a
speaker. In testing, we estimate the corresponding sam-
ple statistics for the same phonetic classes in an utterance.
We then obtain the likelihood of the test statistics given
the training models, where the cepstral mean is modeled
as a normal distribution and the two covariance matrices
are modeled as Wishart distributions. We take a simple
sum of the likelihoods across the means and covariances
of all phonetic classes to determine the score for an utter-
ance given a speaker's model. The score for an utterance
is normalized by subtracting the best score for the utter-
ance across a set of cohort speakers. Experiments using
this model are described below.

4. Speaker-adaptive model estimation

Another method considered uses supervised speaker
adaptation to address the problem of estimating the pa-
rameters of a text-dependent, HMM-based system with
limited enrollment data. Starting from a SI model based
on the BYBLOS system's continuous density HMM [4],
we apply maximum likelihood linear regression (MLLR)
adaptation [2] using each speaker's enrollment speech to
adapt the SI model. Speci�cally, using the known enroll-
ment text, we adapt the means of the mixture model,
keeping the mixture weights and covariance estimates
�xed, and we estimate a single transformation matrix per
speaker. With a single utterance for adaptation data,
we �nd that a single EM pass is su�cient in estimating
counts in the MLLR process. The estimated transfor-
mation is then applied to the SI model to generate the
speaker model that is used at veri�cation time.

There are a number of variants of the SI model that
can be adapted to speakers. We have investigated
phonetically-tied mixture (PTM) models, in which all tri-
phones with the same center phoneme share a common
set of Gaussians with di�erent mixture weights, as well
as state-clustered tied-mixture (SCTM) models, where
the tying of codebooks as well as states that share mix-
ture weights is determined by clustering the states of the
HMM. The number of Gaussians for each of these model
types can also be varied, and we have investigated PTM
models with 64 and 256 Gaussians per mixture codebook
and SCTM with 8 and 32 Gaussians per codebook. In our
experiments to date we have found only minor di�erences
between these di�erent models, and we discuss later re-
sults based on the PTM model with 64 terms (PTM-64).

Veri�cation is accomplished by scoring putative target
speakers against their corresponding model and normal-
izing the result with an appropriate cohort model score
[5]. Scoring consists of using constrained recognition to
�nd the log likelihood of the veri�cation speech given the
HMMs corresponding to the known text.

Both the adaptation and veri�cation require a tran-
scription of the speech, which can be obtained either
by using the prompted text (and assuming no signi�-
cant errors in reading) or using the transcript produced
by the compliance recognizer. While neither method is
completely accurate, since speakers do deviate from the
prompt and since the recognizer misses e�ects like stut-
tering and occasionally deletes or inserts words, we �nd



that using the recognizer's output gives slightly better
performance than using the prompt.

5. Database

To evaluate these methods, we collected a database of
speakers to simulate telephone voice signatures for elec-
tronic documents. There were 135 speakers who called
from di�erent telephones over long distance lines to a col-
lection system. Each speaker made two phone calls in
which they spoke a dummy signature statement, with the
�rst call reserved for training and the second for test. The
dummy signature statement contained 34 words and the
average speaking time for the signature across all speakers
was 11 seconds.

For 82 of the calls, a record of the originating telephone
number used for the call is available. Of these cases, 45
of the callers used di�erent numbers for training and test
calls and 37 used a single number for both. In the exper-
iments below, we look at the e�ect of channel on perfor-
mance. Our assumption is that the largest component of
the channel e�ect is the telephone handset used. We also
assume calls made from the same telephone number use
the same telephone handset, and therefore categorize such
calls as \matched" channel, whereas calls from di�erent
telephone numbers are assumed to have \mismatched"
channel.

6. Experimental Results

In the experiments described below, the speech was ana-
lyzed every 10 msec with a 20 msec Blackman window and
band-pass �ltered between 300 and 3300 Hz. LPC cep-
stra were computed and then RASTA �ltered to remove
a causal estimate of the long-term average cepstra [6].
In experiments with the BPC and speaker-adaptive mod-
els, the cepstral order was 14, while for the GMM model,
previous experiments indicated better performance with
19th order cepstra. We did not test to see if 19 cepstra
also improved the BPC and adaptive models.

In all the methods evaluated, we normalize the raw
likelihoods obtained from a model by cohort normaliza-
tion. The basic normalization is as follows: models are
estimated for every speaker in the cohort set, and in test-
ing, an utterance is scored against a target model and all
cohort speaker models. The normalization score for an
utterance is the maximum of the log likelihoods across
all cohort speakers. In order to maximize the number
of test speakers while keeping cohort and target speak-
ers separate, we split the test data into two groups and
jackknife the roles of target and cohort between them,
with each of the groups serving as the cohort set for the
other. Within a group of targets we further jackknife so
that each speaker's test utterance serves as a true test
for their own model and an impostor test for all other
speakers' models. With a voice signature system, we as-
sume that each speaker's accept/reject threshold would
be tuned separately and therefore �nd the ROC curve
for all speakers as the average of the per speaker ROC's.
Averaging speaker ROC's in this way rather than form-
ing a single speaker-independent ROC gives a small but
consistent improvement across all the methods described.

The �rst model tested on the voice signature task was a
text-independent GMM model. One potential advantage
of the GMM for our problem is that its text-independence
allows training with a relatively small amount of data sim-

ply by scaling the number of terms in the mixture. We
evaluated the GMM using a 16-mixture and 32-mixture
model. In each case, diagonal covariance Gaussian mix-
tures for each speaker were initialized with k-means clus-
tering and trained with 5 passes of EM. We found that
the 32-mixture model performed slightly better for this
task and results for that model are reported below.

We compared the performance of the 32-mixture GMM,
the BPC model and the speaker adaptive model. For the
speaker adaptive model, the adaptation was from a PTM-
64 SI model and the transcriptions used in both adapta-
tion and veri�cation were from the recognition done in
compliance checking. Figure 1 shows the ROC curves for
the three di�erent systems. The horizontal lines to the
y-axis indicate the equal error rate (EER) points, which
are 8.1%, 15.4% and 16.2% for the MLLR-adapted, BPC
and GMM model respectively.

To better understand the systems' behavior we com-
pared their performance when the test and training chan-
nel were either matched or mismatched. Figure 2 com-
pares the ROC's for the BPC and adapted systems for
same and di�erent channel conditions (the GMM model's
performance characteristics were essentially the same as
the BPC's). For these experiments, we looked at the per-
formance of the 82 callers from the complete set of 135
for whom we had records of their originating test and
training telephone number. The EERs for the four condi-
tions are given in Table 1. The BPC model obtains very
good performance on same-channel tests, but it is more
than a factor of 3 worse on the mismatched condition. In
contrast the speaker-adapted model, although performing
slightly worse than the BPC model on the same-channel
condition, seems to be una�ected by channel mismatch.
In fact, the adapted model performs slightly better on
mismatched channel than on matched, although this dif-
ference may well be insigni�cant.

System EER Same EER Di�

Speaker Adapted .081 .065
BPC .066 .20

Table 1. Channel e�ects on EER.

The greatly improved performance on cross channel
seems to account for the better overall performance of the
adapted model approach. We surmise that the adapted
model's improved cross-channel performance is due to
adapting an SI model that is trained on calls from a num-
ber of channels: the adaptation moves the model toward
a speaker, but carries with it a number of channel vari-
ants. This hypothesis is consistent with the slightly better
same-channel performance for the BPC model: training
only on a single speaker and channel is more e�ective
when testing on that same channel than trying to adapt
a somewhat broader, multi-channel SI model to a speaker.

We have also investigated alternative cohort normaliza-
tion methods. We �nd that normalizing by the sum of the
top-N cohort likelihoods, where N is chosen to be about
10% of the number of cohort speakers, rather than choos-
ing the single highest cohort likelihood, gives a small but
consistent improvement. In the speaker adaptive system,
this change improves the equal error rate from 8.1% to
7.4%, but it can also be applied to any of the methods
discussed.
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Figure 1. Comparison of GMM, BPC and

Speaker-Adaptive systems on all tests.
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Figure 2. Comparison of BPC and Speaker-

Adaptive systems for same and di�erent channel

tests.

7. Conclusions

We have investigated alternative methods of model esti-
mation for speaker veri�cation with very limited train-
ing data, including two new approaches, the BPC model,
and a model using MLLR adaptation of a SI model. The
adapted model shows signi�cant improvement for cross-
channel performance and better overall performance than
the BPC and GMM models.
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