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ABSTRACT

This paper compares two approaches to background model rep-
resentation for a text-independent speaker verification task using
Gaussian mixture models. We compare speaker-dependent back-
ground speaker sets to the use of a universal, speaker-independent
background model (UBM). For the UBM, we describe how
Bayesian adaptation can be used to derive claimant speaker mod-
els, providing a structure leading to significant computational sav-
ings during recognition. Experiments are conducted on the 1996
NIST Speaker Recognition Evaluation corpus and it is clearly
shown that a system using a UBM and Bayesian adaptation
of claimant models produces superior performance compared to
speaker-dependent background sets or the UBM with independent
claimant models. In addition, the creation and use of a telephone
handset-type detector and a procedure calledhnorm is also de-
scribed which shows further, large improvements in verification
performance, especially under the difficult mismatched handset
conditions. This is believed to be the first use of applying a hand-
set-type detector and explicit handset-type normalization for the
speaker verification task.

1. INTRODUCTION

For the task of speaker verification, it has been shown by several
researchers that performance can be greatly improved by normal-
izing raw speaker model likelihood scores by the likelihood score
from a background speaker model [1, 2, 3, 4]. That is, for an utter-
anceU , instead of making an accept/reject decision by comparing
the claimant model score to a threshold,p(U jC) > �; a ratio be-
tween the claimant model score and a background model score is
used,p(U jC)=p(U jB) > �̂: This ratio is an approximation to the
likelihood ratio test for the hypothesis that the utterance was spo-
ken by the claimant speaker. Typically, the background speaker
score is approximated by using a collection of alternative speaker
models which are “close” to the claimant model in some sense [1]
or by using a speaker-independent model trained on a large number
of speakers [4].

In this paper we examine techniques for defining background
speaker models and the effects different background models have
on performance, threshold stability, and computation for a text-
independent, telephone-speech, speaker verification task using
Gaussian mixture speaker models. Specifically, we compare the
use of speaker-dependent background speaker sets to the use of
a universal, speaker-independent background model, exploring is-
sues of the size and composition of the background models. A
previous study for text-dependent verification was presented in [5].
In addition we also show how claimant models built from the uni-
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versal background model using Bayesian adaption can greatly im-
prove recognition performance. Experiments are performed on the
1996 NIST Speaker Recognition evaluation corpus, which encom-
passes the entire Switchboard corpus.

The remainder of this paper is organized as follows. The next
section describes the two background modeling procedures. This
is followed in section 3 by a description of the 1996 NIST evalua-
tion corpus and results for the different systems on this corpus.

2. RECOGNITION SYSTEMS

The basic model used in all experiments is the Gaussian Mixture
Speaker Model [3]. In this model, the distribution of acoustic ob-
servation is represented by a Gaussian mixture model (GMM),

p(xtj�) =

MX
i=1

pi bi(x); (1)

with mixture weightspi and Gaussian densitiesbi(x). Maximum
likelihood parameters are estimated using the EM algorithm. Con-
catenated mel-cepstra and delta-cepstra features are used as acous-
tic observations in the experiments. cepstral mean subtraction and
RASTA filtering are used for channel equalization in all experi-
ments.

The average log-likelihood of a model given an utterance (pa-
rameterized into the a sequence of acoustic observations vectors)
X = fx1 : : : ; xT g is computed as

L(Xj�) =
1

T

TX
t=1

log p(xtj�) (2)

2.1. Speaker-Dependent Background Sets
For speaker-dependent background sets, a likelihood ratio score
between the claimed speaker's model,�s, likelihood score and the
average likelihood score of a set of background models,f�bg, is
used [1].

�(Xjs) = L(Xj�s)� log
X
b

expfL(Xj�b)g: (3)

We employ an algorithm described in [3] which uses an inter-
speaker distance measure to select background speakers. Given an
utteranceXA from speaker model�A andXB from speaker model
�B, the distance is defined as

d(�A; �B) = log

�
p(XAj�A)

p(XAj�B)

p(XB j�B)

p(XB j�A)

�
: (4)

Using this distance measure, the selection algorithm finds “close”
speakers, to represent the most competitive voices of imposters,



which are also maximally spread from each other, to reduce re-
dundancy in the background speaker set. A dual set of maximally-
spread “far” speakers are also included in the background set to
provide representation of dissimilar imposters in the likelihood ra-
tio. In the experiments, we used 15 maximally-spread close (msc)
and 15 maximally-spread far (msf) background speaker models per
claimant model. All GMMs used 128 mixtures.

2.2. Universal Background Model
One of the difficulties in using speaker-dependent background sets
is that it requires an extra step in training to select background sets
and more computation and storage during scoring. The goal with a
universal background model (UBM) is that one background model
can be trained once and used for all claimant speakers. The UBM
is a large GMM (2048 mixtures in the experiments) trained on a
large number of speakers (in the experiments 6 hours of speech
from 45 males and 45 females) to create a speaker-independent
model. The number of speakers used to train the UBM should
be large enough to cover the general acoustic space of expected
imposters and not be overly tuned to any particular speakers.

We examined two way to employ such a UBM for the speaker
verification task: independent claimant and UBM models and
claimant models adapted from the UBM. In the case of indepen-
dent models, we simply train a speaker-dependent GMM for each
claimant and compute the following likelihood ratio for a test mes-
sage

�(Xjs) = L(Xj�s)� L(Xj�b): (5)

In the experiments, independent claimant models were 64 mixture
GMMs.

For the speaker adapted claimant models, we use Bayesian
adaptation to train claimant models from the UBM [6]. The
Bayesian adaptation is performed using a fixed relevance factor
r to adapt mixture weights, means and variances in the following
way. Given a UBM (which acts as the prior distribution) and train-
ing observations from the claimant speaker,X = fx1 : : : ; xT g,
we determine the probabilistic alignment of the training data into
the prior mixture components. For mixture componenti we have
a probabilistic count of

n =
X
t

Pr(ijxt) (6)

training observations mapping into the prior parame-
ters (wp; �p; �2p) for mixture componenti. (Since all adaptation
equations refer to a single mixture component, thei notation on
parameters is avoided for clarity) The adaptation coefficient for
this mixture component is

� =
n

n+ r
(7)

wherer is a fixed relevance factor (typically 16 for 2048 mixtures
in our experiments, but dependent on the number of mixtures). The
adapted mixture weight is

wa = [�ws + (1� �)wp]  (8)

where
ws = n=T

is the mixture weight for the new observations andT the total
number of training observations. The scale is computed over
all adapted mixture weights to ensure they sum to unity.

The adapted mixture mean is

�a = ��s + (1� �)�p (9)

where

�s =
1

n

X
t

Pr(ijxt)xt

is the mixture mean of the new observations.
The adapted mixture variance is

�
2

a = �Efx
2

tg+ (1� �)(�2p + �
2

p)� �
2

a (10)

where

Efx
2

tg =
1

n

X
t

Pr(ijxt)x
2

t

is the expected squared value of the new observations in the mix-
ture component. Note that the sufficient statistic is adapted not the
variance parameter itself.

This approach allows mixture dependent adaptation of parame-
ters. If a mixture component has a low probabilistic count,n, of
new data, then� ! 0 causing the de-emphasis of the new (po-
tentially under-trained) parameters and the emphasis of the prior
(better trained) parameters. For mixture components with high
probabilistic counts,� ! 1, causing the use of the new speaker-
dependent parameters. The relevance factor is used as a way of
controlling how much new data should be observed in a mixture
before the new parameters begin replacing the prior parameters.
This approach should thus be robust to limited training data.

The likelihood ratio for a test message is then computed using
equation 5. The fact that the claimant model was adapted from
the UBM, however, allows a faster scoring method than merely
evaluating the GMM for the claimant and UBM. The approach is
based on two observed effects. The first is that when a large GMM
is evaluated for an observation, only a few of the mixtures con-
tribute significantly to the likelihood value. This is simply because
the GMM represents a distribution over a large observation space,
but a single observation will be near only a few components of
the GMM. Thus likelihood values can be approximated very well
using only the topC best scoring mixture components.

The second observed effect, is that the components of the
adapted claimant GMM retain a correspondence with the compo-
nents of the UBM, so that observations close to a particular com-
ponent in the UBM will also be close to the corresponding com-
ponent in the claimant model. Using these two effects, we see that
for each incoming observation, it is possible to first determine the
top C scoring components in the UBM, which are also used to
evaluate the likelihood of the UBM for the observation, and then
score only the correspondingC components in the claimant model
to evaluate the likelihood of the claimant model for the observa-
tion. For a UBM withM mixtures, this requires onlyM + C
component computation per observation compared to2M com-
ponent computation for normal likelihood ratio evaluations. For
multiple claimant models per test message, the savings becomes
even greater. In the experiments, we useC = 5.

3. EXPERIMENTS
3.1. 1996 NIST Speaker Recognition Evaluation Corpus
Speaker verification using the above background modeling ap-
proaches was evaluated on the 1996 NIST Speaker Recognition
Evaluation corpus [7]. This corpus is derived from the Switch-
board corpus, using all available speakers. The available tele-
phone numbers per conversation was exploited to create matched
and mismatched telephone number (handset) test conditions. This
is believed to be the largest text-independent speaker recognition
task run to date.

The corpus consists of 21 male claimants, 19 female claimants,
204 male imposters and 172 female imposters. A set of 90 speak-
ers, separate from the claimants or imposters, was used for back-
ground modeling. There are three training conditions consisting
of



� two minutes of training speech extracted from a single session
(referred to as 1s1h, 1-session 1-handset),

� two minutes of training speech extracted from two sessions
(one minute from each session) originating from the same
telephone number (ostensibly the same handset) (referred to
as 2s1h), and

� two minutes of training speech extracted from two sessions
(one minute from each session) originating from different
telephone numbers (ostensibly different handsets) (referred
to as 2s2h).

Three test utterance durations of nominally 3 seconds, 10 sec-
onds and 30 seconds were used. For each test utterance duration
there are a total of 653 male and 680 female claimant tests (each
equally split between tests from one of the telephone numbers used
in training and tests from a telephone number not used in training)
and 1183 male and 1197 female imposter tests. Verification per-
formance is computed using a speaker-independent threshold on
pooled scores from true claimant scores and same-sex imposter
scores.

In these experiments, we focused on the male claimants using
the 2s2h training condition and the 30 second test condition.

3.2. Baseline Results
Figure 1 shows a plot of the false rejection versus false accep-
tance errors on an inverse probability warped scale (referred to as
Detection Error Tradeoff or DET curves) for the two background
approaches for the male claimants on the 2s2h train, 30 seconds
test condition. In the top plot of Figure 1 we show results for the
matched telephone claimant tests; in the bottom plot Figure 1 we
show results for the mismatched telephone claimant tests.
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Figure 1. DET curves comparing speaker-dependent back-
ground sets and the universal background model (both in-
dependent and adapted claimant models) score normaliza-
tion techniques for matched (upper) and mismatched (lower)
telephone number claimant tests.

As clear from these results and also found under the other
train/test conditions, the UBM using adapted claimant models sig-
nificantly outperforms the speaker-dependent background sets and
the independent claimant model used with the UBM.

3.3. Handset Dependent Score Normalization - hnorm
In examining the scores produced by the different recognition sys-
tems, it became clear that speaker models were producing different
distributions of scores for the same test utterances, most signifi-
cantly for the mismatched telephone number tests. Since a pooled
(speaker-independent) threshold is being used, this caused signifi-
cantly higher false alarm rates for a given miss rate.

Based on earlier work [8, 9], we believed that handset differ-
ences associated with different telephone numbers was the root
cause of the observed differences. Since handset information is
not available, we created a handset detector to label the test utter-
ances a being either from a carbon-button type handset (CARB) or
an electret type handset (ELEC). The handset detector is a simple
maximum likelihood classifier in which handset dependent GMMs
were trained using the HTIMIT corpus1 [10]. Using these labels,
we did indeed observe that different claimant models responded
differently to different handset types. This occurs because the
claimant model not only represents the speaker but also the hand-
set characteristics over which the training data was collected. Thus
a claimant model trained on speech from a CARB handset would
tend to score better to other utterances also collected over a CARB
handset. There is a similar affinity for claimant models trained
with ELEC speech to score well on ELEC test data. These obser-
vations and the utility of the handset labeler are supported by work
reported in [11].

To normalize out these effects, we developed a handset score
normalization technique called hnorm. In hnorm, we first deter-
mine the response of a claimant's model to speech with CARB
and ELEC labels, The response to CARB speech is parameter-
ized as the mean and variance of the likelihood ratios produced
by the claimant model for development utterances labeled as
CARB. Likewise for ELEC. Note that the speech used to deter-
mine the claimant's response is not from the claimant, but from
non-claimant development speakers. Each claimants then has two
sets of parameters describing his/her model's response to CARB
and ELEC type speech:

f�s(CARB); �s(CARB); �s(ELEC); �s(ELEC)g

During testing, an input utterance is first labeled as CARB or
ELEC and scored as normal to obtain the likelihood ratio score
for a particular claimant model. To hnorm the likelihood ratio,
�(Xjs), we apply the hnorm parameters as follows (assumeX
was labeled as CARB):

�HNORM(Xjs) =
�(Xjs)� �s(CARB)

�s(CARB)
(11)

This has the effect of causing each claimant model to produce
zero mean and unit standard deviation scores for non-claimant
speech, independent of the handset characteristics of the test ut-
terance or of those used in training the claimant model. In addi-
tion to helping normalize out handset-dependent biases for a par-
ticular claimant model, this normalization also makes a speaker-
independent threshold more effect for all claimant speakers.

The hnorm procedure was applied to the evaluation corpus. A
comparison of the baseline UBM using claimant model adaptation
with and without applying hnorm is shown in Figure 2. It is evi-
dent that hnorm produces a significant reduction in errors for the
mismatched condition. At 10% miss rate, the false alarm rate de-
creases from 14.5% to 2.4% – an 83% reduction in error.

1HTIMIT is a handset dependent corpus derived by playing a subset of
TIMIT through known CARB and ELEC handsets.
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Figure 2. DET curves comparing the UBM with claimant
model adaptation baseline with hnorm score normaliza-
tion for matched (upper) and mismatched (lower) telephone
number conditions.

In Figure 3 we show the distribution of log-likelihood ratio
scores both with and without hnorm applied. Note that prior
to hnorm (upper plots), the score distribution for mismatched
claimant tests is clearly bi-modal, indicating differing responses
for different utterances. After applying hnorm, we see that the
distribution for mismatched claimant tests is tighter although still
appearing bi-modal and not as tight as the distribution for matched
claimant tests. Even for the matched claimant tests, hnorm appears
to help with a few low scoring tests2.

4. CONCLUSION

This paper has compared two approaches to background model
representation for a text-independent speaker verification task us-
ing GMMs. Experiments were conducted on the 1996 NIST
Speaker Recognition Evaluation corpus and it was clearly shown
that a system using a universal background model (UBM) and
Bayesian adaptation of claimant models produced superior per-
formance compared to speaker-dependent background sets or the
UBM with independent claimant models. In addition, a proce-
dure calledhnormwas described which was shown to further im-
prove verification performance, especially under the difficult mis-
matched handset conditions. It is believed that this is the first use
of applying a handset-type labeler and explicit handset-type nor-
malization for the speaker verification task.

Future work is expected to focus on a different uses of the hand-
set labels to normalize features or model parameters directly for
improved handset variability compensation.

2These likely occur when calls from a single phone number use differ-
ent telephone handsets.
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Figure 3. Distribution of log-likelihood ratio scores for
matched claimant tests, mismatched claimant tests and non-
claimant tests. All scores are from the UBM with claimant
adaptation. The upper three plots are baseline scores. The
bottom three plots are for scores after hnorm has been ap-
plied.
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