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ABSTRACT

In this paper, a hybrid network based on the combi-
nation of Radial Basis Function Networks (RBFNs)
and Gaussian Mixture Models (GMMs) is proposed
and used for speaker recognition. The hybrid net-
work is a hierarchical one, where a GMM is built for
each speaker and an RBFN is built for each group
of speakers. The GMMs and RBFNs are trained in-
dependently. The RBFNs are used as a �rst stage
coarse classi�er and the GMMs are used as the �nal
classi�er. For each RBFN, only the �rst several candi-
dates are chosen to take part in the �nal classi�cation.
The hybrid system is used for the SPIDRE database
speaker recognition. Some experiments were carried
out to choose the proper structure and parameters
of RBFNs and GMMs. After using RBFNs, about
40% speakers were excluded without decreasing the
performance. If the most confusable speaker sets in
GMMs are grouped into RBFNs, the performance of
GMMs can be increased more by using RBFNs.

1. INTRODUCTION

In recent years, GMMs have been successfully used
in speaker recognition [1]. The training procedure
of GMMs is based on Maximum Likelihood Estima-
tion (MLE), whose discriminative power is limited.
With an increase of the number of the recognition
classes, both the speed and performance of GMMs
decrease. In order to increase the recognition perfor-
mance, many new approaches have been proposed,
among which neural networks based on discriminant
training are the most promising methods [2, 3, 4].
Many experiments show that both the discriminant
training methods and MLE training can provide good
performance, if there are enough model parameters,
there is su�cient training data, the priori probabili-
ties are known, and the modeling assumptions �t the
data distributions. However, if these conditions are
not satis�ed, discriminant training can provide better
performance [2, 3, 4].

There are many kinds of neural networks which
have been successfully used for speech and speaker
recognition, among which RBFNs are being widely
used because of their faster training speed [2, 3, 4].
Like some other kinds of neural networks, RBFNs
can approximate any function, if there are su�cient
hidden nodes and the model parameters are trained
properly. However, if a single RBFN is used to rec-
ognize a large group of classes, its structure will be-
come more complex and training become more dif-

�cult, which result in lower performance. In order
to use the discriminant training abilities of RBFNs
and to overcome their shortcomings, we proposed a
hybrid system, which is based on the combination of
GMMs and RBFNs.

2. THEORY OF RBFN AND GMM

2.1. Radial basis function networks

The RBFN is a kernel function classi�er, which uses
the local areas formed by some simple kernel func-
tions to make the decision boundaries among the recog-
nition classes. The RBFN is a three-layer-node feed-
forward network (two-layers of connection weights).
The input nodes correspond to the input pattern.
The number of the input nodes is equal to the di-
mension of the input vectors. Each hidden node is an
RBF node, which evaluates the input pattern by us-
ing the kernel function, and takes the evaluated score
as its output. Each hidden node has two parameters,
center and width. There are many kinds of functions
that can be used as the kernel function in the hidden
layer of RBFNs. Experiments show that the form of
the hidden nodes is not critical to the performance of
RBFNs [2, 3, 4]. In our RBFNs, each hidden node is
a Gaussian basis function,
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where K is a constant, H is the number of hidden
nodes, �j is the output of the j-th hidden node for
input X , Cj and �j are the covariance matrix and
mean vector of the j-th hidden node, which corre-
sponds to the center and width of a hidden node,
respectively. If we suppose that in the P dimensional
feature space, the di�erent elements are independent,
then the covariance matrix is diagonal.
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where the index p means the p-th element of the cor-
responding vector. In such a case, the distribution of
�j(X) is a hyper-ellipsoid in the P dimensional space.
The variance of each dimension, which is the width
of the Gaussian kernel, is determined by the length
of the axis of each corresponding dimension. If we
further suppose that the variances of di�erent dimen-
sions for the j-th base function are equal, then �j(X)
is a hyper-sphere in the P dimensional space. As for
the Mel Frequency Cepstral Coe�cients (MFCC) of



speech signals, the variations of di�erent dimensions
are quite di�erent, so it is more accurate to use a
hyper-ellipsoid instead of a hyper-sphere to describe
the distribution of each base function.

Each output node represents a recognition class,
and the value of each output node is the weighted
summation of the outputs of all the hidden nodes.
The class whose output node gives the highest value
is chosen as the recognition result. The output nodes
ful�ll the following functions:
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where O is the number of output nodes, Wij is the
connection weight between the j-th hidden node and
the i-th output node, �0(X) is the bias hidden node
and �0(X) = 1. The parameters of the RBFNs
can be trained layer by layer, with the centers and
widths of the hidden nodes trained �rst and the con-
nection weights between the hidden nodes and the
output nodes trained later. This is just the reason
why RBFNs can be trained faster than other neural
networks. The �rst layer can be trained by any clus-
tering method, for example, LBG or K-means clus-
tering methods. The second layer can be trained
by the Least Mean Square (LMS) algorithm or be
treated as a singer layer perceptron and trained by
Error Back Propagation (EBP). The training proce-
dure of RBFNs is a discriminant one; patterns from
each class should be used at the same time.

2.2. Gaussian mixture models

A GMM is a special Hidden Markov Model (HMM),
which has only one state and no state transition pa-
rameters. The only state of the GMM is also called
the output node. The value of the output node is the
weighted summation of the outputs of each mixture,
and represents an evaluation score of the GMM to
the input pattern. Each GMM has several mixtures,
which are Gaussian distribution functions, the same
as the hidden nodes in an RBFN. For a GMM, its
output and mixtures are de�ned by:
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where �j(X) is the output of the j-th mixture, y(X)
is the total evaluation score of input X , Wj is the
mixture weight, M is the number of mixtures, N is
the normal distribution, Cj and �j are the covariance
matrix and mean vector of the j-th mixture, respec-
tively. It can be seen that the form of a mixture in
GMMs is similar to that of a hidden node in RBFNs.

For each GMM, the means and covariances of the
mixtures and the mixture weights can be initialized
by using the same clustering method as that used
for training the hidden nodes of RBFNs. These val-
ues can then be optimized by using the Expectation-
Maximization (EM) algorithm [1]. While the values
of the connection weights in an RBFN can be positive,

negative or zero, the values of the mixture weights in
a GMM can only be positive. For each recognition
class, a GMM can be built independently using only
the training patterns of the class.

3. GMM/RBFN HYBRID SYSTEM

Though RBFNs have been used successfully when the
number of recognition classes is small, it is di�cult to
build just one RBFN to recognize many classes. With
an increase in the number of recognition classes, not
only the training of an RBFN becomes quite di�cult,
but also its recognition performance decreases greatly.
As for a GMM, its recognition rate also decreases
when there are more recognition classes. If the error
parts of GMMs and RBFNs do not overlap, then it
is possible to improve the performance of GMMs by
using RBFNs.

The hybrid system has two stages. The �rst stage
consists of a set of RBFNs, each corresponding to
a group of speakers. The RBFNs are used as coarse
classi�ers. After the test pattern passes the �rst stage,
only the most possible candidates are selected to take
part in the second stage match using GMMs. Thus,
the number of recognition classes in the second stage
reduces. Of course, su�cient candidates must be cho-
sen in the �rst stage to guarantee that the correct
class will be included in the second stage.

4. DATABASE AND FEATURES

The SPIDRE (Speaker Identi�cation Research) data-
base is used in our experiments. It consists of text-
independent telephone speech and contains 45 target
speakers (male and female). Each speaker has 4 con-
versations, two of them coming from the same hand-
set and the others from di�erent handsets. The max-
imum length of each conversation is 5 minutes. In the
SPIDRE speech, the background is noisy and chan-
nel noise is high. When doing feature extraction, the
length for frame analysis is 30 ms and the frame shift
is 10 ms. The Hamming window is used. By using
the frame energy, the silence parts of each conversa-
tion can be judged and skipped. For each frame, the
15 dimensional MFCCs and corresponding �rst order
delta MFCCs are calculated. Since the frame energy
may change for di�erent speakers, di�erent conversa-
tions and at di�erent times, it may not be a stable
factor for a speaker's information. So the energy ele-
ment is omitted and only 14 dimensional MFCCs are
used. For each speaker, one of the two conversations
coming from the same handset of each speaker is ran-
domly selected for training; the other 3 conversations
were used for testing. The �rst 23 speakers are used
and there is no overlap between the test patterns in
our experiments.

5. EXPERIMENTS

Since the hybrid network is a combination of GMMs
and RBFNs, it is important to increase the perfor-
mance of both GMMs and RBFNs before building
the hybrid network. Several experiments have been
done to decide the proper structure and parameters
of RBFNs and GMMs. For each RBFN in our exper-
iments, all speakers have equal amounts of training



speech, and the actual length used of each training
conversation is the same, so the RBFN will not be
biased on any particular speaker.

5.1. Number of hidden nodes in RBFNs
and mixtures in GMMs

There is no theoretical guide for choosing the proper
number of hidden nodes in RBFNs and the number of
mixtures in GMMs. Using the same training sets and
test sets, we tested the performance of RBFNs with
di�erent hidden nodes (from 64 to 512) and GMMs
with di�erent mixtures (from 16 to 160). The ex-
periments show that for an RBFN whose number of
input nodes and number of output nodes are given, a
proper number of hidden nodes should be chosen. As
for GMMs, when the number of mixtures increases,
the performance does not vary much. Too few hid-
den nodes/mixtures may not be su�cient for model-
ing the distributions in the vector space, while too
many may not be precisely estimated from a spe-
ci�c training database. The more the hidden nodes
or mixtures, the longer the training and recognition
time. When choosing the number of hidden nodes,
the number of training patterns and the number of
RBFN output nodes should also be taken into consid-
eration. In our later experiments, 256 hidden nodes
and 64 mixtures are used and for RBFNs and GMMs,
respectively.

5.2. The lower limit of covariance

The minimum value of the covariances of the hid-
den nodes in RBFNs and mixtures in GMMs cannot
be too small, otherwise the singularity can cause di-
vergence of RBFNs or decrease the performance of
RBFNs and GMMS [1]. We also tested the perfor-
mance of RBFNs and GMMs with di�erent values of
the lower limit of covariance and found that to get
better performance for our database, 0:01 � �2

min
�

0:03 and 0:03 � �2
min

� 0:1 should be set for GMMs
and RBFNs, respectively.

5.3. Delta CEP features
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Figure 1 Error rates of GMMs with/without using delta
CEP(8 speakers, handset adaptation)

Delta CEP is the di�erential version of the MFCC,
which characterizes the variation of cepstral parame-
ters along the time axis and is also called transitional
features. When using only delta CEP in our RBFN,
the performance is quite lower. Many experiments
show that using dynamic features (delta CEP) to-
gether with static features (CEP) can improve the
performance of a speech recognition system. Some
comparative experiments were carried out to see if
the additional delta CEP can improve the perfor-
mance of GMMs and RBFNs. From Fig. 1, it can
been seen that after using the delta CEP, the perfor-
mance increased for both the di�erent handset and
same handset case. The same results were obtained
for RBFNs. The performance of RBFNs does not
increase as much compared with that of GMMs.

5.4. Cross-training

When only one conversation is used for training, the
performance is not high. In order to see if the perfor-
mance can be increased by adding more training pat-
terns, especially di�erent handset patterns, a conver-
sation in the test set coming from a di�erent handset
than the original training conversation was randomly
selected and added to the training set. Fig. 2 shows
the results of GMM with/without cross-training.

After cross-training, the performance of the same
handset decreased, while the performance for the whole
test set increased. The improvement of performance
of the test set results from the great increase of the
di�erent handsets. The great di�erence between the
performance of same handset and di�erent handsets
was greatly decreased by using cross-training. Similar
results were obtained for RBFNs.
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Figure 2 Error rates of GMMs with/without cross train-
ing(8 speakers, handset adaptation, 29 dimensional data)

5.5. Handset adaptation

For both GMMs and RBFNs, the performance of dif-
ferent handsets was lower. In order to increase the
recognition rate of di�erent handsets, we used hand-
set adaptation for all conversations. For each con-
versation, after silence parts are omitted, an average
vector (mean) of the conversation is calculated and
subtracted from each frame. The results of GMMs be-
fore/after the handset adaptation are shown in Fig. 3.



After adaptation, the performance for GMMs in-
creased. The di�erence between the performance of
the same handset and the di�erent handsets does not
decrease much. While doing mean vector subtraction,
the speaker's information may also be eliminated to
some extent. The ability of this kind of handset adap-
tation is limited.
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Figure 3 Error rates of GMMs with/without handset
adaptation (8 speakers, cross-training. 29 dimensional data)

5.6. GMMs/RBFNs

The more the output nodes in each RBFN, the better
its discriminative power can be used, and at the same
time, the more di�cult to train the RBFN and the
lower its performance. Since GMMs can not recover
the inclusion error of RBFNs, it is quite important
for the correct class to be chosen by RBFNs in the
�rst stage. We compared the inclusion rate and the
complexity of RBFNs with di�erent number of output
nodes, and �nd that RBFNs with smaller number of
output nodes are easier to train. In the hybrid net-
work, 5 RBFNs were used with each has 5 output
nodes except the last one has 3. The 23 speakers
in SPIDRE were grouped into 5 groups (i.e.,RBFNs)
according the sequence the speaker appeared.

A GMM was built for each speaker and an RBFN
was built for each group of speakers. In the hybrid
networks, the training sets and testing sets used in
RBFNs and GMMs are same. The 14 CEPs and 15
delta CEPs were used and the handset adaptation
was only used on the 14 CEPs part. For the RBFNs
with 5/3 output nodes, when the �rst 4/2 candidates
were selected to take part in the second stage classi�-
cation, the performance of the hybrid network is the
same as that of using only GMMs.

Fig. 4 shows the error rates of GMMs with/without
using RBFNs when using crossing-training and choos-
ing the �rst 3/2 candidates in RBFNs. The perfor-
mance of the hybrid net dropped a little for short
test patterns, and increased or did not change for
longer test patterns compared with that of using only
GMMs. Here about 40% recognition classes were ex-
cluded in the �rst stage classi�cation. In our experi-
ments, the speakers were grouped into the RBFNs by
sequence. If the speakers, which are di�cult to be dis-
tinguished by GMMs, are grouped into the RBFNs,
it is possible to increase the overall performance.

In our experiments, the performance of GMMs or
RBFNs on the training sets is always high. For a few
test conversations, most of their testing patterns can-
not be recognized correctly by GMM or RBFN. Some
di�erent-handset conversations give low error rates,
but other same-handset conversations give high er-
ror rates. Although some speakers claimed that they
used the same handset, actually they might have used
di�erent ones if there were several telephone handsets
in their house. This may be the reason for the high
error rates of some same-handset conversations.
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Figure 4 Error rates of GMMs with/without using
RBFNs(23 speakers, handset adaptation, cross-training, 29 di-
mensional data)

6. CONCLUSIONS

In this paper, a GMM/RBFN hybrid network was
proposed and used for speaker recognition. Some ex-
periments were carried out to choose the proper struc-
ture and parameters of RBFNs and GMMs. Without
decreasing the performance, about 40% recognition
classes were excluded by using RBFNs. If the most
confusable speaker sets in GMMs are grouped into
RBFNs, the performance of GMMs can be increased
more greatly.
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